PMC:1481596 / 35730-36710
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1481596","sourcedb":"PMC","sourceid":"1481596","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1481596","text":"We reduce the above problem to the Minimum Vertex Cover problem. The squares in the original graph become edges and diagonals become vertices in the new graph. Thus the original graph is transformed to a \"square coverage\" graph, which in turn serves as an input to the Minimum Vertex Cover problem. In the Minimum Vertex Cover problem we are given a graph and are asked to find the smallest set of vertices that cover all the edges in the graph. An edge is covered if at least one of its end points is selected. Coming back to our example, it can be easily seen that {(B, D)} is the minimum vertex cover (Figure 6). Although the Minimum Vertex Cover problem is an NP-hard problem, if the size of the optimum solution is small an efficient algorithm can be obtained. In other words the Minimum Vertex Cover problem is fixed parameter tractable. We use an O(2k(n + m)) algorithm [26] to identify all minimal sets of edges of size up to k that eliminate all the squares in the graph.","tracks":[]}