PMC:1481596 / 35034-35652 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1481596","sourcedb":"PMC","sourceid":"1481596","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1481596","text":"A square in a graph can be eliminated by adding one or both of its diagonals (chords) to the graph. For example, a graph in Figure 6 has two squares: (A, B, C, D) and (A, B, E, D). Note that (B, C, D, E) is not a square as one of its diagonals, (C, E), is an edge in the graph. The square (A, B, C, D) can be eliminated if either edge (A, C) or (B, D) is added to the graph. Furthermore, a single diagonal can eliminate more than one square. For example, the diagonal (B, D)eliminates both squares. We are interested in finding all minimal sets of diagonals of size up to k that eliminate all the squares in the graph.","tracks":[]}