PMC:1459173 / 8427-9475
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1459173","sourcedb":"PMC","sourceid":"1459173","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1459173","text":"Table 1 The pseudocode of the motif extraction algorithm.\nMain() Iterate(m, B, Result)\n{ {\nResult ← {}; G:l m' ← m;\nB ← {mi|mi is a cell}; G:2 For each b = Extract(B) with\nFor each m = Extract(B) G:3 ((b ~-compatible m'\nIterate(m, B, Result); OR (m' ~-compatible b))\nResult ← Result; G:4 If (m' ~-compatible b)\n} G:5 mt ← m' ~ b;\nG:6 If Nodelnconsistent(mt) exit;\nG:7 If (|m'| = |b|) B ← B - {b};\nG:8 If (|| ≤ K)\nG:9 m' ← mt;\nG:10 Iterate(m', B, Result);\nG:11 If (b ~-compatible m')\nG:12 mt ← b ~ m';\nG:13 If Nodelnconsistent(mt) exit;\nG:14 If (|m'| = |b|) B ← B - {b};\nG:15 If (|| ≥ K)\nG:16 m' ← mt;\nG:17 Iterate(m', B, Result);\nG:18 For each r ∈ Result with r = m'\nG:19 If (m' is not maximal w.r.t. r) return;\nG:20 Result ← Result ⋃ {m'};\n}","divisions":[{"label":"label","span":{"begin":0,"end":7}},{"label":"caption","span":{"begin":9,"end":58}},{"label":"p","span":{"begin":9,"end":58}},{"label":"tr","span":{"begin":59,"end":88}},{"label":"td","span":{"begin":59,"end":65}},{"label":"td","span":{"begin":67,"end":88}},{"label":"tr","span":{"begin":89,"end":93}},{"label":"td","span":{"begin":89,"end":90}},{"label":"td","span":{"begin":92,"end":93}},{"label":"tr","span":{"begin":94,"end":123}},{"label":"td","span":{"begin":94,"end":106}},{"label":"td","span":{"begin":108,"end":123}},{"label":"tr","span":{"begin":124,"end":184}},{"label":"td","span":{"begin":124,"end":146}},{"label":"td","span":{"begin":148,"end":184}},{"label":"tr","span":{"begin":185,"end":240}},{"label":"td","span":{"begin":185,"end":208}},{"label":"td","span":{"begin":210,"end":240}},{"label":"tr","span":{"begin":241,"end":298}},{"label":"td","span":{"begin":241,"end":263}},{"label":"td","span":{"begin":265,"end":298}},{"label":"tr","span":{"begin":299,"end":356}},{"label":"td","span":{"begin":299,"end":315}},{"label":"td","span":{"begin":317,"end":356}},{"label":"tr","span":{"begin":357,"end":392}},{"label":"td","span":{"begin":357,"end":358}},{"label":"td","span":{"begin":360,"end":392}},{"label":"tr","span":{"begin":393,"end":442}},{"label":"td","span":{"begin":393,"end":442}},{"label":"tr","span":{"begin":443,"end":491}},{"label":"td","span":{"begin":443,"end":491}},{"label":"tr","span":{"begin":492,"end":523}},{"label":"td","span":{"begin":492,"end":523}},{"label":"tr","span":{"begin":524,"end":555}},{"label":"td","span":{"begin":524,"end":555}},{"label":"tr","span":{"begin":556,"end":603}},{"label":"td","span":{"begin":556,"end":603}},{"label":"tr","span":{"begin":604,"end":644}},{"label":"td","span":{"begin":604,"end":644}},{"label":"tr","span":{"begin":645,"end":678}},{"label":"td","span":{"begin":645,"end":678}},{"label":"tr","span":{"begin":679,"end":729}},{"label":"td","span":{"begin":679,"end":729}},{"label":"tr","span":{"begin":730,"end":779}},{"label":"td","span":{"begin":730,"end":779}},{"label":"tr","span":{"begin":780,"end":812}},{"label":"td","span":{"begin":780,"end":812}},{"label":"tr","span":{"begin":813,"end":845}},{"label":"td","span":{"begin":813,"end":845}},{"label":"tr","span":{"begin":846,"end":893}},{"label":"td","span":{"begin":846,"end":893}},{"label":"tr","span":{"begin":894,"end":943}},{"label":"td","span":{"begin":894,"end":943}},{"label":"tr","span":{"begin":944,"end":1004}},{"label":"td","span":{"begin":944,"end":1004}},{"label":"tr","span":{"begin":1005,"end":1046}},{"label":"td","span":{"begin":1005,"end":1046}}],"tracks":[]}