PMC:1247194 / 18513-19514
Annnotations
2_test
{"project":"2_test","denotations":[{"id":"15198921-10811568-28170884","span":{"begin":423,"end":427},"obj":"10811568"},{"id":"15198921-10811568-28170885","span":{"begin":995,"end":999},"obj":"10811568"}],"text":"Misclassification of exposure is of particular concern in environmental epidemiology studies because of the challenges in estimating exposure to environmental contaminants, which can occur across multiple locations and often at low levels. Exposure errors in time–series studies can occur as a continuum of measurement errors between classic-type errors and Berkson errors, as has been presented in detail by Zeger et al. (2000) regarding air pollution and health. Each type of error has different effects on the estimation of risk. Berkson error occurs when the exposure metric is at the population level, and individual exposures vary because of different activity patterns. An example of a population-level or aggregate exposure metric is the assignment of air pollutant levels from a stationary air monitor to the population living in the vicinity of the monitor. Berkson error does not lead to bias in the risk estimate although the variance of the risk estimate is increased (Zeger et al. 2000)."}
MyTest
{"project":"MyTest","denotations":[{"id":"15198921-10811568-28170884","span":{"begin":423,"end":427},"obj":"10811568"},{"id":"15198921-10811568-28170885","span":{"begin":995,"end":999},"obj":"10811568"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"Misclassification of exposure is of particular concern in environmental epidemiology studies because of the challenges in estimating exposure to environmental contaminants, which can occur across multiple locations and often at low levels. Exposure errors in time–series studies can occur as a continuum of measurement errors between classic-type errors and Berkson errors, as has been presented in detail by Zeger et al. (2000) regarding air pollution and health. Each type of error has different effects on the estimation of risk. Berkson error occurs when the exposure metric is at the population level, and individual exposures vary because of different activity patterns. An example of a population-level or aggregate exposure metric is the assignment of air pollutant levels from a stationary air monitor to the population living in the vicinity of the monitor. Berkson error does not lead to bias in the risk estimate although the variance of the risk estimate is increased (Zeger et al. 2000)."}