CORD-19:6e2db98aa242e3e84116afdfad5e250943c55ac5 / 43266-43394 JSONTXT

Annnotations TAB JSON ListView MergeView

    CORD-19_Custom_license_subset

    {"project":"CORD-19_Custom_license_subset","denotations":[{"id":"T364","span":{"begin":0,"end":128},"obj":"Sentence"}],"text":"We take infimum operations on both sides of the first step conclusion, i.e., inf T(u, S 1 ∪ S 2 ) = inf T(u, S 1 ) ∪ T(u, S 2 )."}

    CORD-19-Sentences

    {"project":"CORD-19-Sentences","denotations":[{"id":"TextSentencer_T364","span":{"begin":0,"end":128},"obj":"Sentence"},{"id":"TextSentencer_T364","span":{"begin":0,"end":128},"obj":"Sentence"},{"id":"T83369","span":{"begin":0,"end":128},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"We take infimum operations on both sides of the first step conclusion, i.e., inf T(u, S 1 ∪ S 2 ) = inf T(u, S 1 ) ∪ T(u, S 2 )."}

    Epistemic_Statements

    {"project":"Epistemic_Statements","denotations":[{"id":"T137","span":{"begin":0,"end":128},"obj":"Epistemic_statement"}],"text":"We take infimum operations on both sides of the first step conclusion, i.e., inf T(u, S 1 ∪ S 2 ) = inf T(u, S 1 ) ∪ T(u, S 2 )."}