Id |
Subject |
Object |
Predicate |
Lexical cue |
TextSentencer_T152 |
0-312 |
Sentence |
denotes |
Given an arbitrary instance of the Set Cover problem, we define a corresponding directed bipartite graph with n + m nodes: there is a node i corresponding to each element u i ∈ U, a node j corresponding to each set S j ∈ S, and a directed edge (i, j) with activation probability ip(i, j) = 1 whenever u i ∈ S j . |
TextSentencer_T152 |
0-312 |
Sentence |
denotes |
Given an arbitrary instance of the Set Cover problem, we define a corresponding directed bipartite graph with n + m nodes: there is a node i corresponding to each element u i ∈ U, a node j corresponding to each set S j ∈ S, and a directed edge (i, j) with activation probability ip(i, j) = 1 whenever u i ∈ S j . |
T98346 |
0-312 |
Sentence |
denotes |
Given an arbitrary instance of the Set Cover problem, we define a corresponding directed bipartite graph with n + m nodes: there is a node i corresponding to each element u i ∈ U, a node j corresponding to each set S j ∈ S, and a directed edge (i, j) with activation probability ip(i, j) = 1 whenever u i ∈ S j . |