> top > users > Jin-Dong Kim
Jin-Dong Kim
User info
Collections
NameDescriptionUpdated at
1-10 / 12 show all
GlycoBiologyAnnotations made to the titles and abstracts of the journal 'GlycoBiology'2019-03-10
PreeclampsiaPreeclampsia-related annotations for text mining2019-03-10
bionlp-st-ge-2016The 2016 edition of the Genia event extraction (GE) task organized within BioNLP-ST 20162019-03-11
GlyCosmos600A random collection of 600 PubMed abstracts from 6 glycobiology-related journals: Glycobiology, Glycoconjugate journal, The Journal of biological chemistry, Journal of proteome research, Journal of proteomics, and Carbohydrate research. The whole PMIDs were collected on June 11, 2019. From each journal, 100 PMIDs were randomly sampled.2021-10-22
LitCovid-v1This collection includes the result from the Covid-19 Virtual Hackathon. LitCovid is a comprehensive literature resource on the subject of Covid-19 collected by NCBI: https://www.ncbi.nlm.nih.gov/research/coronavirus/ Since the literature dataset was released, several groups are producing annotations to the dataset. To facilitate a venue for aggregating the valuable resources which are highly relevant to each other, and should be much more useful when they can be accessed together, this PubAnnotation collection is set up. It is a part of the Covid19-PubAnnotation project. In this collection, the LitCovid-docs project contains all the documents contained in the LitCovid literature collection, and the other projects are annotation datasets contributed by various groups. It is an open collection, which means anyone who wants to contribute can do so, in the following way: take the documents in the, LitCovid-docs project produce annotation to the texts based on your resource, and contribute the annotation back to this collection: create your own project at PubAnnotaiton, upload your annotation to the project (HowTo), and add the project to this collection. All the contributed annotations will become publicly available. Please note that, during uploading your annotation data, you do not need to be worried about slight changes in the text: PubAnnotation will automatically catch them and adjust the positions appropriately. Should you have any question, please feel free to mail to admin@pubannotation.org. 2020-11-20
LitCovid-sampleVarious annotations to a sample set of LitCovid, to demonstrate potential of harmonized various annotations.2021-01-14
CORD-19-sample-annotation2020-04-21
LitCovid2021-10-18
LitCoin2021-12-14
CORD-19CORD-19 (COVID-19 Open Research Dataset) is a free, open resource for the global research community provided by the Allen Institute for AI: https://pages.semanticscholar.org/coronavirus-research. As of 2020-03-20, it contains over 29,000 full text articles. This CORD-19 collection at PubAnnotation is prepared for the purpose of collecting annotations to the texts, so that they can be easily accessed and utilized. If you want to contribute with your annotation, take the documents in the CORD-19_All_docs project, produce your annotation to the texts using your annotation system, and contribute the annotation back to PubAnnotation (HowTo). All the contributed annotations will become publicly available. Please note that, during uploading your annotation data, you do not need to be worried about slight changes in the text: PubAnnotation will automatically catch them and adjust the positions appropriately. Once you have uploaded your annotation, please notify it to admin@pubannotation.org admin@pubannotation.org, so that it can be included in this collection, which will make your annotation much easily findable. Note that as the CORD-19 dataset grows, the documents in this collection also will be updated. IMPORTANT: CORD-19 License agreement requires that the dataset must be used for text and data mining only.2020-04-14
Projects
Name TDescription# Ann.Updated atStatus
121-130 / 163 show all
LitCovid-sample-UniProt1.25 K2023-11-30Testing
LitCovid-sentences5.63 M2023-11-24Developing
LitCovid-sentences-v1Sentence segmentation of all the texts in the LitCovid literature. The segmentation is automatically obtained using the TextSentencer annotation service developed and maintained by DBCLS.16.5 K2023-11-27Released
LitCovid-TimeML426 K2023-11-29Developing
LitCovid-v1-docsA comprehensive literature resource on the subject of Covid-19 is collected by NCBI: https://www.ncbi.nlm.nih.gov/research/coronavirus/ The LitCovid project@PubAnnotation is a collection of the titles and abstracts of the LitCovid dataset, for the people who want to perform text mining analysis. Please note that if you produce some annotation to the documents in this project, and contribute the annotation back to PubAnnotation, it will become publicly available together with contribution from other people. If you want to contribute your annotation to PubAnnotation, please refer to the documentation page: http://www.pubannotation.org/docs/submit-annotation/ The list of the PMID is sourced from here The 6 entries of the following PMIDs could not be included because they were not available from PubMed:32161394, 32104909, 32090470, 32076224, 32161394 32188956, 32238946. Below is a notice from the original LitCovid dataset: PUBLIC DOMAIN NOTICE National Center for Biotechnology Information This software/database is a "United States Government Work" under the terms of the United States Copyright Act. It was written as part of the author's official duties as a United States Government employee and thus cannot be copyrighted. This software/database is freely available to the public for use. The National Library of Medicine and the U.S. Government have not placed any restriction on its use or reproduction. Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software and data, the NLM and the U.S. Government do not and cannot warrant the performance or results that may be obtained by using this software or data. The NLM and the U.S. Government disclaim all warranties, express or implied, including warranties of performance, merchantability or fitness for any particular purpose. Please cite the authors in any work or product based on this material : Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 02023-11-29Released
MENA-example52023-11-29
MENA-example232023-11-24Testing
metamap-sampleSample annotation of MetaMep, produced by Aronson, et al. An overview of MetaMap: historical perspective and recent advances, JAMIA 201010.9 K2023-11-27Testing
mondo_diseaseannotation for diseases and disorders as defined in MONDO. Automatic annotation by PD-MONDO.1.16 M2024-09-18Developing
MyTest9.81 M2023-11-24Testing
Automatic annotators
NameDescription
21-30 / 38 show all
discourse-simplifierA discourse analyzer developed by Univ. Manchester.
PD-FMA-PAE-BBatch mode annotator of PD-FMA-PAE
PD-GO-BP-BBiological Processes as defined in GO
EnjuParserEnju HPSG Parser developed by University of Tokyo.
PD-UBERON-AE-2023It annotates for anatomical entities, based on the UBERON-AE-2023 dictionary on PubDictionaries. Threshold is set to 0.85.
PD-UBERON-AE-BIt annotates for anatomical entities, based on the UBERON-AE dictionary on PubDictionaries. It used the default threshold, 0.85. It uses the batch mode annotation, and may be used for annotation to a large amount of documents.
PD-UBERON-AEIt annotates for anatomical entities, based on the UBERON-AE dictionary on PubDictionaries. Threshold is set to 0.85.
PD-FMA-PAEPhysical Anatomical Entities from FMA
PD-CHEBIPubdictionaries annotation using the terms sourced from CHEBI, the 2020-03-31 version
PD-MONDOPubDictionaries annotation with the MONDO dictionary.
Editors
NameDescription
1-1 / 1
TextAEThe official stable version of TextAE.