Degradation of extracellular chondroitin sulfate delays recovery of network activity after perturbation. Chondroitin sulfate proteoglycans (CSPGs) are widely studied in vertebrate systems and are known to play a key role in development, plasticity, and regulation of cortical circuitry. The mechanistic details of this role are still elusive, but increasingly central to the investigation is the homeostatic balance between network excitation and inhibition. Studying a simpler neuronal circuit may prove advantageous for discovering the mechanistic details of the cellular effects of CSPGs. In this study we used a well-established model of homeostatic change after injury in the crab Cancer borealis to show first evidence that CSPGs are necessary for network activity homeostasis. We degraded CSPGs in the pyloric circuit of the stomatogastric ganglion with the enzyme chondroitinase ABC (chABC) and found that removal of CSPGs does not influence the ongoing rhythm of the pyloric circuit but does limit its capacity for recovery after a networkwide perturbation. Without CSPGs, the postperturbation rhythm is slower than in controls and rhythm recovery is delayed. In addition to providing a new model system for the study of CSPGs, this study suggests a wider role for CSPGs, and perhaps the extracellular matrix in general, beyond simply plastic reorganization (as observed in mammals) and into a foundational regulatory role of neural circuitry.