The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. The Rad6 ubiquitin-conjugating enzyme in Saccharomyces cerevisiae is known to interact with three separate ubiquitin ligase proteins (Ubr1, Rad18, and Bre1) specific to different targets. The Rad6/Rad18 complex is central to translesion synthesis and the family of DNA transactions known as post-replication repair (PRR). A less well-known aspect of Rad6-mediated DNA repair, however, involves its function with Bre1 in mono-ubiquitinating the histone H2B residue lysine 123. Here, we review how this ubiquitination impacts histone H3 methylation, and how this in turn impacts the DNA damage response. In S. cerevisiae this pathway is required for checkpoint activation in G1, and contributes to DNA repair via the homologous recombination pathway (HRR) in G2 cells. Thus, RAD6 clearly plays a role in HRR in addition to its central role in PRR. We also summarize what is known about related repair pathways in other eukaryotes, including mammals. Recent literature emphasizes the role of methylated histones in S. cerevisiae, Schizosaccharomyces pombe and mammals in attracting the related DNA damage checkpoint proteins Rad9, Crb2 and 53BP1, respectively, to chromatin at the sites of DNA double-strand breaks. However, the specific histone modification pathways involved diverge in these different eukaryotes.