PubMed:11030745 / 82-90
Stereochemical metrics of lectin-carbohydrate interactions: comparison with protein-protein interfaces.
A global census of stereochemical metrics including interface size, hydropathy, amino acid propensities, packing and hydrogen bonding was carried out on 32 x-ray-elucidated structures of lectin-carbohydrate complexes covering eight different lectin families. It is shown that the interactions at primary binding subsites are more efficient than at other subsites. Another salient behavior found for primary subsites was a marked negative correlation between the interface size and the polar surface content. It is noteworthy that this demographic rule is delineated by lectins with unrelated phylogenetic origin, indicating that independent interface architectures have evolved through common optimization paths. The structural properties of lectin-carbohydrate interfaces were compared with those characterizing a set of 32 protein homodimers. Overall, the analysis shows that the stereochemical bases of lectin-carbohydrate and protein-protein interfaces differ drastically from each other. In comparison with protein-protein complexes, lectin-carbohydrate interfaces have superior packing efficiency, better hydrogen bonding stereochemistry, and higher interaction cooperativity. A similar conclusion holds in the comparison with protein-protein heterocomplexes. We propose that the energetic consequence of this better interaction geometry is a larger decrease in free energy per unit of area buried, feature that enables lectins and carbohydrates to form stable complexes with relatively small interface areas. These observations lend support to the emerging notion that systems differing from each other in their stereochemical metrics may rely on different energetic bases.
|