PubMed:10741825 JSONTXT

Annnotations TAB JSON ListView MergeView

    GlyCosmos6-Glycan-Motif-Image

    {"project":"GlyCosmos6-Glycan-Motif-Image","denotations":[{"id":"T1","span":{"begin":56,"end":63},"obj":"Glycan_Motif"},{"id":"T2","span":{"begin":190,"end":197},"obj":"Glycan_Motif"}],"attributes":[{"id":"A1","pred":"image","subj":"T1","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"},{"id":"A2","pred":"image","subj":"T2","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}

    sentences

    {"project":"sentences","denotations":[{"id":"TextSentencer_T1","span":{"begin":0,"end":146},"obj":"Sentence"},{"id":"TextSentencer_T2","span":{"begin":147,"end":307},"obj":"Sentence"},{"id":"TextSentencer_T3","span":{"begin":308,"end":714},"obj":"Sentence"},{"id":"TextSentencer_T4","span":{"begin":715,"end":1104},"obj":"Sentence"},{"id":"TextSentencer_T5","span":{"begin":1105,"end":1298},"obj":"Sentence"},{"id":"T1","span":{"begin":0,"end":146},"obj":"Sentence"},{"id":"T2","span":{"begin":147,"end":307},"obj":"Sentence"},{"id":"T3","span":{"begin":308,"end":714},"obj":"Sentence"},{"id":"T4","span":{"begin":715,"end":1104},"obj":"Sentence"},{"id":"T5","span":{"begin":1105,"end":1298},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}

    GlyCosmos6-Glycan-Motif-Structure

    {"project":"GlyCosmos6-Glycan-Motif-Structure","denotations":[{"id":"T1","span":{"begin":56,"end":63},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"},{"id":"T2","span":{"begin":190,"end":197},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}

    Glycosmos6-MAT

    {"project":"Glycosmos6-MAT","denotations":[{"id":"T1","span":{"begin":909,"end":914},"obj":"http://purl.obolibrary.org/obo/MAT_0000139"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}

    Anatomy-MAT

    {"project":"Anatomy-MAT","denotations":[{"id":"T1","span":{"begin":909,"end":914},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"mat_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/MAT_0000139"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}

    Anatomy-UBERON

    {"project":"Anatomy-UBERON","denotations":[{"id":"T1","span":{"begin":434,"end":444},"obj":"Body_part"},{"id":"T2","span":{"begin":1058,"end":1069},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"uberon_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/CL_0000182"},{"id":"A2","pred":"uberon_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/CL_0000182"}],"text":"Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis.\n4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity."}