Mutation analysis of the Pip interaction domain reveals critical residues for protein-protein interactions. The PU.1 interaction partner (Pip) is a member of the interferon regulatory factor family that regulates gene expression through heterodimerization with the ETS transcription factor PU.1. Binding of Pip alone to DNA is weak, and usually it is recruited by phosphorylated PU.1 to form a strong ternary complex with specific DNA sequences. An approach combining sequence homology analysis, secondary structure predictions, and a precise mutational strategy has been used to determine critical residues within the Pip heterodimerization domain that contribute to ternary complex formation. We have delimited the Pip interaction domain to residues 245-422 by using deletion analysis. Site-directed mutagenesis of conserved polar amino acids within two predicted alpha-helices contained in this region, and which are highly conserved in the IRF family, confirmed the importance of these residues for Pip-PU.1 interaction with DNA as well as for trans-activation activity. Our results suggest the existence of a functional epitope essential for heterodimerization between Pip and PU.1 and possibly, in general, between interferon regulatory factor family members and their partners.