3.3. Intervention Dilemma in Blocking Information We assume the government will block any transmission of under-the-blocking-threshold (XB) information between individuals; thus, XB=0 denotes the special case in previous discussion. Other settings are the same as above. In this part, we will discuss the optimal blocking strategies and analyze the mechanism. As shown in Figure 5, the optimal blocking threshold varies from case to case. Overall, a small blocking threshold ([0.1,0.3]) is necessarily (100%) not optimal; a strict blocking threshold (XB≥0.8) is usually (50.41%) optimal, experimental data show a value between 45% and 55% in most external conditions; but 0 is the optimal threshold still in 20.25% of cases, and usually (89.80%) occurs when ξ≥0.8 and XI≤0.7. When the initial information is low (ξ≤0.6), not blocking is seldom (0.83%) optimal. We have our key findings from the above analysis. First, minor blocking is not an option for government because it is dominated by stricter blocking in a deteriorated or being deteriorated information environment and undermines the efficiency of information dissemination in a benevolent environment. Second, in the age of the Internet, information is extremely interconnected and low-quality information is more easily disseminated, thus stricter information blocking might be an option worth considering in the early stages of an outbreak of an unknown infectious disease. Finally, if the virus is well-known at the medical level, plus the public has a certain level of health awareness, free spread of information might improve the situation; while, otherwise, as in the case of COVID-19, governments should intervene in the spread of information in social networks. From the simulation results, we can see that, in most cases, the optimal strategy will be either highly stringent blocking or free spread. Blocking low-quality information not only increases the overall information of the whole population, but causes side effects under certain external conditions. Thus, not blocking can be an optimal strategy in some cases. In this section, we provide an in-depth analysis of the data and a mechanistic analysis. Figure 5b reveals in general the optimal blocking threshold negatively correlates with initial information: as initial information drops from 1 to 0.4, the probability of optimal blocking threshold taking 0 will be 52.07%, 27.27%, 1.65%, and 0%, respectively. Figure 5c shows a positive correlation between optimal blocking threshold and individual threshold. Governments block information mainly by suppressing less-accurate information, but which, once implemented, will slow down the overall information dissemination in the network anyway. Therefore, blocking can neither be too stringent nor too liberal, an optimal one usually lies in between. However, mild blocking is necessarily not optimal as it fails to purify the information environment. Furthermore, when the virus is well-known (ξ=1), especially when public health awareness is high (XI≤0.3), not blocking dominates most of the time (69.70%). While stringent blocking (XB≥0.8) is necessarily not (0%) an optimal strategy because higher-quality information, which helps to slow the spread of the disease with high public health awareness, is also blocked. Thus, when both the initial information and the level of public health awareness are at a high level, not blocking is optimal; otherwise, information that would not cause panic might do now. In addition, when medical awareness of the virus declines, so does the proportion of valuable information, which necessitates blocking as well.