The scattering of light by small particles is described by Mie theory [27], and is quite non linear. However, using the experimental setup described herein, these nonlinearities will smooth over to a large extent due to the breadth and angle of the laser cone, and wide distribution of particle sizes. The brightness can, therefore, be taken as approximately proportional to the volume of material. Although it is possible to extract pseudo-quantitative results from these images by merely summing up the brightness of each pixel, we caution against doing so for two reasons. As seen in the no-mask image (FigureĀ 3A), a narrow, fast-moving jet appears dim due to the small area of laser sheet it covers, despite carrying a large volume. This weakness could be addressed by more complex image analysis. Another caveat is that the results are dependent on the exact position of the laser sheet. In the configuration used in the current study, for example, any leakage from under the chin would not be detected. However, when using additional laser sheets, it is apparent that almost all leakage occurs around the eyes and cheeks for the masks we tested. These additional laser sheets complicate the interpretation of the images, even if using different laser colors. Directing the cone straight onto the face to form a laser ring around the masks results in a large background scatter from the dummy skin. Although this background can be reduced by black paint and image processing, this configuration would then require another laser sheet to detect penetration.