In 2019, Kandeil et al. [64] reported a new IAV isolated in 2017 from Egyptian fruit bats (Rousettus aegyptiacus, family Pteropodidae) in an abandoned mudbrick house in a densely inhabited agricultural village in the Nile Delta, Egypt. The new IAV was found more frequently in oral swabs than in rectal swabs. Each of eight genomic segments of this newly characterized bat influenza A/bat/Egypt/381OP/2017 virus was shown to have nucleotide (nt) and aa sequences similar to those in genes of other avian IAVs isolated from wild birds, except for those in the PA gene, which are similar to those in the PA gene of an equine IAV (H7N7). The HA protein of the Egyptian bat IAVs is closely related to the group 1 cluster of HA subtypes with highest similarity (73% identity) to the H9 HA of influenza A/mallard/Ohio/13OS3856/2013 virus (H9N2). A receptor binding assay indicated that the Egyptian bat virus possessing Q226 (H3 numbering) in the RBS showed a clear binding preference for α2,3sialyllactose receptors over α2,6sialyllactose receptors, suggesting that Siaα2,3Gal receptors might be abundant in the infection sites in Egyptian fruit bats. Further investigation of that possibility is required. The virus was speculated to originate from an avian host, and that speculation was supported by the finding that the virus can grow well in allantoic fluid cavities of embryonated chicken eggs. The virus can also propagate in MDCK cells and in the lungs of C57BL/6 mice and BALB/c mice, indicating the possibility of the virus causing infection in other mammalian species. Thus, surveillance of IAVs among bats and distribution in other animals should be performed.