2.2. Propolis: Its Constituents, Biological, and Pharmacological Activities Propolis, also known as bee glue, is a sticky wax-like substance that constitutes a mixture of bee salivary secretions, bee wax, and resinous sap occurring in the bark and leaf-buds of specific plants [37,65]. It comes in green, red, brown, or black colors based on the collected local flora [66]. The word propolis comprises two Greek words “pro” and “polis”, which in order mean “in front of or at the entrance to” and “community or city”. Propolis is a hive-defensive substance, which bees use to protect and repair their hives [67]. Propolis is a unique product of a complex composition that comprises more than 420 chemical substances [37,68]. Nonetheless, its composition and biological activities vary considerably depending on its botanical and geographical origins as well as the time of harvesting [38,65,67]. Propolis is rich in oxyprenylated phenylpropanoids—secondary metabolites from plants, fungi, and bacteria [69]—such as 7-isopentenyloxucoumarin, boropinic acid, 4-geranyloxyferulic acid, and auraptene. The last two exist in raw Italian propolis at high concentrations: 107.12 and 145.37 μg/g of dry propolis, respectively. Flavonoids, a large group of phenolic compounds, are abundant in Italian propolis, and they are differentiated into several groups including flavanones (e.g., naringenine, 4.4 mg/g), flavones (e.g., apigenine, 1.7 mg/g), flavonols (e.g., galaning, 0.9 mg/g), tannins (e.g., gallic acid 8.4 mg/g), catechins (expressed as (+)-catechin 0.4 mg/g, and caffeic acid and its esters (expressed as caffeic acid, 9.2 mg/g) [69]. The most profuse flavonoids in ethanolic extracts of Brazilian propolis are artepillin C (38.6 mg/g), coumaric acid (10.6 mg/g), and kaempferide (12.6 mg/g) [70]. Key other constituents of propolis include polyphenol (e.g., phenolic acids and aromatic esters), phenolic aldehydes, terpenoids, ketones, enzymes (e.g., α- and β-amylase), vitamins (e.g., thiamin (B1), riboflavin (B2), pyridoxine (B6), ascorbic acid (C), tocopherol (E)), minerals (e.g., calcium, potassium, magnesium, iron, sodium, barium) essential oils, alcohol, fatty acids, β-steroids, and many other elements [37,38,67,68,71]. The attention of several drug targeting studies has recently been focused on the therapeutic activities of individual bioactive compounds in propolis [65,68]. Flavonoids comprise the majority of mostly studies bioactive substances in propolis. Chrysin (5,7-dihydroxyflavone) is a flavonoid that exists in certain mushrooms, flowers (e.g., blue passion flower), and in other bee products (e.g., honey). It expresses anti-inflammatory, antioxidant, anti-proliferative, and neuroprotective effects [72]. Caffeic acid phenethyl ester (CAPE), a derivative of hydroxycinnamic acid, expresses anti-oxidant, immunomodulatory, anti-inflammatory, antiviral, and ant-neoplastic properties [73,74,75]. Pinocembrin (5,7-dihydroxyflavanone) is the most copious flavonoid in propolis—1 g of balsam/an ethanolic extract from poplar propolis found in Spain contains up to 606–701 mg of pinocembrin [76]. It exists in numerous plants (e.g., Eucalyptus and Populus). It exhibits anti-inflammatory, antioxidant, antimicrobial, and antiproliferative activities [77,78]. Essential/volatile oils are major bioactive constituents of propolis, and they contribute to its special aroma [79,80]. They also, partially, contribute to the strong antimicrobial, antioxidant, and anticancer activities of propolis [79,81,82]. The volatile fraction of propolis varies in each sample even within a single country due to plant source and climate [79]. For instance, cumulative knowledge shows that volatile oils in propolis found in countries surrounding the Mediterranean depend mainly on the botanical origin. They primarily comprise poplar-derived compounds (e.g., benzoic acid and its esters and oxygenated sesquiterpene β-eudesmol) and conifer-derived compounds such as the hydrocarbon monoterpene α-pinene [80]. Interestingly, the number of volatile compounds derived from a single type of propolis is also reported to vary according to extraction techniques. In this regard, reports from China show that traditional hydrodistillation, steam-distillation extraction, and dynamic headspace sampling could characterize around 12, 40 and 70 type of volatile components of propolis, respectively [79]. Moreover, the level of antimicrobial activity of volatile compounds of propolis greatly depends on their extent of purification [82]. Thanks to its countless bioactive elements, propolis enjoys a range of versatile biological and pharmacological properties including antimicrobial, antiviral, antifungal, antioxidant, anti-inflammatory, antineoplastic, antiaging, and cytostatic properties. In addition, it is considered a perfect natural food preservative due to its antimicrobial activity [35,38,65,66,68,71]. Because of its enormous health-promoting activities, propolis is widely used as a dietary supplement in many countries, especially in Japan [37,38,39]. Propolis is not suitable for use in its crude state since it may contact harmful materials e.g., asphalt from the road [68]. Using solvents like ethanol, glycerol, chloroform, ether and acetone or water is necessary to get rid of hazardous substances and to increase its yield of bioactive compounds [67,68]. Although water may be a cheap solvent, propolis has poor solubility in water. Therefore, propolis water extracts are 10-fold lower in their phenolic contents than ethanol extracts. In addition, they retain the strong flavor and aroma of propolis [68]. Moreover, propolis contains allergenic components: caffeic acids derivates (e.g., 3-methyl-2-butenyl caffeate and phenylethyl caffeate), as well as benzyl salicylate and benzyl cinnamate [80]. Therefore, propolis use/consumption should be contraindicated in individuals with known allergies.