ADVANCE MORE RISK‐BASED REGULATORY DECISIONS TO ADDRESS OTHER SERIOUS DISEASES In order to rapidly accelerate the development and manufacturing scale‐up of COVID‐19 therapeutics, industry and regulators continue to partner in quick fashion to adopt fit‐for‐purpose regulatory strategies. Similar to how we take such exceptional action for COVID‐19 patients, we need to advance regulatory policy for patients with life‐limiting autoimmune conditions, late‐stage heart failure, or other serious illnesses. Such life‐threatening diseases will continue long after COVID‐19 is managed, and it will be important not to revert to previous practices and to emerge from the current situation with enduring solutions for the benefit of patients, globally. This objective will challenge each stakeholder to implement processes that enable regulators to prioritize and focus on the most important, unmet needs with the most substantial public health impacts. Innovative clinical evidence generation The pandemic has underscored the premium for speed of success and the acceptability by regulators of the use of innovative trial strategies with a quantitative decision‐making framework to support regulatory approval. We have seen the benefit of streamlining trial protocols and embracing novel trial designs such as platform approaches to simultaneously test multiple assets in the clinic, using historical data for predictive analyses, or borrowing information on placebo/standard of care from other trials. 10 These mechanisms, together with use of real‐world data on external controls and adaptive clinical designs are not new and are increasingly well understood and accepted. They should be leveraged where similar benefit/ risk considerations apply. Risk‐based preclinical safety requirements The global support for drug and vaccine development, including streamlining nonclinical requirements, has allowed candidates, such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV2) antibodies, to move quickly into the clinic to most efficiently determine if the experimental treatment is effective for patients. The practice of deferring or eliminating certain preclinical studies while there is a degree of uncertainty in the experimental candidate for specific life‐threatening illnesses with no effective treatment is not new. ICH S9 Guideline “Nonclinical Evaluation for Anticancer Pharmaceuticals” provides for such regulatory flexibility for advanced oncology indications. We encourage regulators to apply this approach to other life‐threatening illnesses across therapeutic areas, and to model a global harmonized approach as ICH. The benefits to society could be significant—by reducing the need to use animals, modernize drug development, and potentially make new therapies available to patients faster. Fit for purpose and risk‐based CMC requirements As preclinical and clinical phases are streamlined, chemistry and manufacturing controls (CMC) data must equally be fit for purpose. In order to rapidly accelerate the development and manufacturing scale‐up of COVID‐19 treatments and vaccines, regulators have employed risk‐based decisions to defer certain CMC requirements to later stages of development or even post approval. There are long‐standing challenges to accelerating manufacturing aspects under expedited programs, and the COVID‐19 experience further emphasizes the need for analogous regulatory flexibility. For instance, using judgment‐based clinically meaningful specifications or deferring longer‐term stability data until the postmarket setting. Moreover, allowing companies to report more postapproval changes within their quality system (vs. submitting for regulatory approval) would allow for more manufacturing flexibility and ability to react to supply challenges globally more quickly, as outlined in ICH Q12 Guideline “Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Development.”