Identification of candidate genes (CGs) and Enrichment analysis of CGs Twenty-three candidate genes (CGs) were identified by using the VennDiagram package (Figure 5). Then R software was used to perform GO and KEGG pathway analysis of the CGs. GO of CGs was analyzed based on BP, CC, MF. 1215 GO terms were significantly enriched (P<0.05), 1148 in BP, 28 in CC, 39 in MF. Top 20 terms were shown in Figure 6. The data of top 20 GO analysis were listed in Table 5. Based on these GO terms data, we found that most significantly terms were response to lipopolysaccharide, response to molecule of bacterial origin, membrane raft, membrane microdomain, BH domain binding and death domain binding, suggested that SFJDC could treat NCP with multiple synergies. The pathways that were significantly affected by SFJDC in the process of treating NCP were identified by KEGG pathway. 110 KEGG pathways were significantly enriched (P<0.05). Top twenty pathways were shown in Figure 7, color represented P value and size of the spot represented count of genes. Based on the analysis of KEGG pathway data (Table 6), the top five pathways such as Kaposi sarcoma-associated herpesvirus infection, AGE-RAGE signaling pathway in diabetic complications, Human cytomegalovirus infection, IL-17 signaling pathway and Hepatitis B, might be the core pharmacological mechanism of SFJDC for NCP. In this study, we chose the functional annotation clustering and set the classification stringency as high in DAVID. A total of 20 functional annotation clusters were obtained (Table 7). Annotation Cluster 1 (enrichment score 6.04) contains three categories: Asthma, Bronchiolitis Viral, Respiratory Syncytial Virus Infections, respiratory syncytial virus bronchiolitis, and all of them were lung related diseases and Virus infection disease.