KRI published a series of articles in a special issue of BMC Infectious Diseases in 2015 using its updated integrated model that aimed to help national, regional, and global health leaders navigate the polio endgame from 2013 to 2052. Modeling the long-term risks requires characterization of the potential for reintroductions of iVDPVs from a small number of individuals with B-cell-related primary immunodeficiencies [50], for which KRI reviewed the evidence collected since its 2006 statistical analysis [13]. KRI recognized that static modeling of historical data offered low predictive power for future iVDPV risks. As a result, KRI developed a DES model to support the stochastic generation of iVDPV excreters for prospective risk analyses and the exploration of the potential benefits of polio antiviral drugs (PAVDs) [50]. KRI used its iVDPV model and other stochastic risks related to containment in its integrated global model to characterize the risks, costs, and benefits of different future poliovirus risk management options for 2013–2052 compared to the 2013 baseline, which included continued widespread use of OPV for control [51]. Using both the global model [51] and a model of northern Nigeria [49], KRI showed the importance of vaccine choice and preferential use of tOPV in the run-up to globally coordinated cessation of serotype 2 OPV (i.e. OPV2 cessation), which was then-planned and since implemented in late April 2016 [52]. Recognizing the importance of significant tOPV use and sensitive to the time delays and costs of vaccine production, KRI estimated potential tOPV and bOPV needs through 2020 [53]. As global health policymakers approached the final decision point for establishing the timing of OPV2 cessation, KRI explored alternative OPV cessation and IPV introduction timing options [54] that showed substantial financial benefits associated with delayed IPV introduction. KRI demonstrated the importance of using aggressive and high-quality (i.e. rapid, high coverage, sufficiently large scope) outbreak response SIAs after OPV cessation and during the polio endgame [55]. In anticipation of coordinated OPV2 cessation, KRI explored the risks of potential non-synchronous OPV2 cessation [56] and of inadvertent tOPV use after OPV2 cessation [57]. Later work showed the potential risks of non-synchronous bOPV cessation and inadvertent use of serotype 1 or 3 OPV use after bivalent OPV cessation [58].