Introduction COVID-19 resulting from the new coronavirus strain (SARS-CoV-2) represents an unprecedented challenge for the global health system. Since its appearance in Wuhan, China, in December 2019, it has rapidly spread worldwide up to be classified as a pandemic by the World Health Organization (WHO) on March 12, 2020 [3]. The interhuman transmission is the result of droplets’ projection toward another host or via human contact (e.g., handshaking) or through an inert surface [25]: the estimated half-life of SARS-CoV-2 in the droplets has been estimated to range between 1.1 to 1.2 h and it should be minded that the use of a common N95 mask does not get the risk of contagion down to zero [4, 13]. All over the world, ‘lock down’ and ‘social distancing’ have been key strategies to control infection outbreak. A great amount of information concerning the circulation of the infection among healthcare professionals has pointed out equal volume of issues within the scientific community, in particular regarding the best strategies to contain the transmission of the virus in the intrahospital environment [19]. Due to alarming increase of cases affected by this contagious disease, many hospitals have decreased or stopped elective interventions and moved their effort and personnel to admit and take care of patients affected by COVID-19 [12]. In particular, many questions have arisen about the safety of performing medical and surgical maneuvers involving the respiratory mucosa and, in the field of neurosurgery, transnasal transsphenoidal surgery has been charged of maximum risk of spread and contagion, above all for healthcare professionals. [24] However, patients’ needs cannot remain unfulfilled, so that we had to embrace the great challenge of continuing assistance at least for urgent and non-deferrable cases, while reducing the risks of this tremendous infectious disease. Transnasal pituitary and skull base surgery is performed in a narrow longitudinal canal: the possibility that aerosols and droplets from the nostrils escape aspiration is described and the evidence that, subsequently, they could be inhaled by surgeons has been described [22]. The adoption of correct strategies to obtain a reduction of human contacts between medical personnel and patients along with the use of adequate PPE for both parties is crucial to keep the practice safe [1]. Accordingly, several groups developed a cogent and “maximally safe” protocol to give most appropriate treatment to the patients, while minimizing the risks of COVID-19 diffusion [7, 17, 19]. Herein, we report further tailored preventive measures we adopted during non-deferrable endoscopic endonasal surgery in order to reduce the possibility of transmission.