The S protein plays a significant role in the induction of protective immunity against SARS-CoV by mediating T-cell responses and neutralizing antibody production (168). In the past few decades, we have seen several attempts to develop a vaccine against human coronaviruses by using S protein as the target (168, 169). However, the developed vaccines have minimal application, even among closely related strains of the virus, due to a lack of cross-protection. That is mainly because of the extensive diversity existing among the different antigenic variants of the virus (104). The contributions of the structural proteins, like spike (S), matrix (M), small envelope (E), and nucleocapsid (N) proteins, of SARS-CoV to induce protective immunity has been evaluated by expressing them in a recombinant parainfluenza virus type 3 vector (BHPIV3). Of note, the result was conclusive that the expression of M, E, or N proteins without the presence of S protein would not confer any noticeable protection, with the absence of detectable serum SARS-CoV-neutralizing antibodies (170). Antigenic determinant sites present over S and N structural proteins of SARS-CoV-2 can be explored as suitable vaccine candidates (294). In the Asian population, S, E, M, and N proteins of SARS-CoV-2 are being targeted for developing subunit vaccines against COVID-19 (295).