CORONAVIRUSES IN ANIMALS AND ZOONOTIC LINKS—A BRIEF VIEWPOINT Coronavirus can cause disease in several species of domestic and wild animals, as well as humans (23). The different animal species that are infected with CoV include horses, camels, cattle, swine, dogs, cats, rodents, birds, ferrets, minks, bats, rabbits, snakes, and various other wild animals (20, 30, 79, 93, 124, 125, 287). Coronavirus infection is linked to different kinds of clinical manifestations, varying from enteritis in cows and pigs, upper respiratory disease in chickens, and fatal respiratory infections in humans (30). Among the CoV genera, Alphacoronavirus and Betacoronavirus infect mammals, while Gammacoronavirus and Deltacoronavirus mainly infect birds, fishes, and, sometimes, mammals (27, 29, 106). Several novel coronaviruses that come under the genus Deltacoronavirus have been discovered in the past from birds, like Wigeon coronavirus HKU20, Bulbul coronavirus HKU11, Munia coronavirus HKU13, white-eye coronavirus HKU16, night-heron coronavirus HKU19, and common moorhen coronavirus HKU21, as well as from pigs (porcine coronavirus HKU15) (6, 29). Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine hemagglutinating encephalomyelitis virus (PHEV) are some of the coronaviruses of swine. Among them, TGEV and PEDV are responsible for causing severe gastroenteritis in young piglets with noteworthy morbidity and mortality. Infection with PHEV also causes enteric infection but can cause encephalitis due to its ability to infect the nervous system (30). Bovine coronaviruses (BoCoVs) are known to infect several domestic and wild ruminants (126). BoCoV inflicts neonatal calf diarrhea in adult cattle, leading to bloody diarrhea (winter dysentery) and respiratory disease complex (shipping fever) in cattle of all age groups (126). BoCoV-like viruses have been noted in humans, suggesting its zoonotic potential as well (127). Feline enteric and feline infectious peritonitis (FIP) viruses are the two major feline CoVs (128), where feline CoVs can affect the gastrointestinal tract, abdominal cavity (peritonitis), respiratory tract, and central nervous system (128). Canines are also affected by CoVs that fall under different genera, namely, canine enteric coronavirus in Alphacoronavirus and canine respiratory coronavirus in Betacoronavirus, affecting the enteric and respiratory tract, respectively (129, 130). IBV, under Gammacoronavirus, causes diseases of respiratory, urinary, and reproductive systems, with substantial economic losses in chickens (131, 132). In small laboratory animals, mouse hepatitis virus, rat sialodacryoadenitis coronavirus, and guinea pig and rabbit coronaviruses are the major CoVs associated with disease manifestations like enteritis, hepatitis, and respiratory infections (10, 133). Swine acute diarrhea syndrome coronavirus (SADS-CoV) was first identified in suckling piglets having severe enteritis and belongs to the genus Alphacoronavirus (106). The outbreak was associated with considerable scale mortality of piglets (24,693 deaths) across four farms in China (134). The virus isolated from the piglets was almost identical to and had 95% genomic similarity with horseshoe bat (Rhinolophus species) coronavirus HKU2, suggesting a bat origin of the pig virus (106, 134, 135). It is also imperative to note that the SADS-CoV outbreak started in Guangdong province, near the location of the SARS pandemic origin (134). Before this outbreak, pigs were not known to be infected with bat-origin coronaviruses. This indicates that the bat-origin coronavirus jumped to pig by breaking the species barrier. The next step of this jump might not end well, since pigs are considered the mixing vessel for influenza A viruses due to their ability to be infected by both human and avian influenza A viruses (136). Similarly, they may act as the mixing vessel for coronaviruses, since they are in frequent contact with both humans and multiple wildlife species. Additionally, pigs are also found to be susceptible to infection with human SARS-CoV and MERS-CoV, making this scenario a nightmare (109, 137). It is only a matter of time before another zoonotic coronavirus results in an epidemic by jumping the so-called species barrier (287). The host spectrum of coronavirus increased when a novel coronavirus, namely, SW1, was recognized in the liver tissue of a captive beluga whale (Delphinapterus leucas) (138). In recent decades, several novel coronaviruses were identified from different animal species. Bats can harbor these viruses without manifesting any clinical disease but are persistently infected (30). They are the only mammals with the capacity for self-powered flight, which enables them to migrate long distances, unlike land mammals. Bats are distributed worldwide and also account for about a fifth of all mammalian species (6). This makes them the ideal reservoir host for many viral agents and also the source of novel coronaviruses that have yet to be identified. It has become a necessity to study the diversity of coronavirus in the bat population to prevent future outbreaks that could jeopardize livestock and public health. The repeated outbreaks caused by bat-origin coronaviruses calls for the development of efficient molecular surveillance strategies for studying Betacoronavirus among animals (12), especially in the Rhinolophus bat family (86). Chinese bats have high commercial value, since they are used in traditional Chinese medicine (TCM). Therefore, the handling of bats for trading purposes poses a considerable risk of transmitting zoonotic CoV epidemics (139). Due to the possible role played by farm and wild animals in SARS-CoV-2 infection, the WHO, in their novel coronavirus (COVID-19) situation report, recommended the avoidance of unprotected contact with both farm and wild animals (25). The live-animal markets, like the one in Guangdong, China, provides a setting for animal coronaviruses to amplify and to be transmitted to new hosts, like humans (78). Such markets can be considered a critical place for the origin of novel zoonotic diseases and have enormous public health significance in the event of an outbreak. Bats are the reservoirs for several viruses; hence, the role of bats in the present outbreak cannot be ruled out (140). In a qualitative study conducted for evaluating the zoonotic risk factors among rural communities of southern China, the frequent human-animal interactions along with the low levels of environmental biosecurity were identified as significant risks for the emergence of zoonotic disease in local communities (141, 142). The comprehensive sequence analysis of the SARS-CoV-2 RNA genome identified that the CoV from Wuhan is a recombinant virus of the bat coronavirus and another coronavirus of unknown origin. The recombination was found to have happened within the viral spike glycoprotein, which recognizes the cell surface receptor. Further analysis of the genome based on codon usage identified the snake as the most probable animal reservoir of SARS-CoV-2 (143). Contrary to these findings, another genome analysis proposed that the genome of SARS-CoV-2 is 96% identical to bat coronavirus, reflecting its origin from bats (63). The involvement of bat-derived materials in causing the current outbreak cannot be ruled out. High risk is involved in the production of bat-derived materials for TCM practices involving the handling of wild bats. The use of bats for TCM practices will remain a severe risk for the occurrence of zoonotic coronavirus epidemics in the future (139). Furthermore, the pangolins are an endangered species of animals that harbor a wide variety of viruses, including coronaviruses (144). The coronavirus isolated from Malayan pangolins (Manis javanica) showed a very high amino acid identity with COVID-19 at E (100%), M (98.2%), N (96.7%), and S genes (90.4%). The RBD of S protein in CoV isolated from pangolin was almost identical (one amino acid difference) to that of SARS-CoV-2. A comparison of the genomes suggests recombination between pangolin-CoV-like viruses with the bat-CoV-RaTG13-like virus. All this suggests the potential of pangolins to act as the intermediate host of SARS-CoV-2 (145). Human-wildlife interactions, which are increasing in the context of climate change (142), are further considered high risk and responsible for the emergence of SARS-CoV. COVID-19 is also suspected of having a similar mode of origin. Hence, to prevent the occurrence of another zoonotic spillover (1), exhaustive coordinated efforts are needed to identify the high-risk pathogens harbored by wild animal populations, conducting surveillance among the people who are susceptible to zoonotic spillover events (12), and to improve the biosecurity measures associated with the wildlife trade (146). The serological surveillance studies conducted in people living in proximity to bat caves had earlier identified the serological confirmation of SARS-related CoVs in humans. People living at the wildlife-human interface, mainly in rural China, are regularly exposed to SARS-related CoVs (147). These findings will not have any significance until a significant outbreak occurs due to a virus-like SARS-CoV-2. There is a steady increase in the reports of COVID-19 in companion and wild animals around the world. Further studies are required to evaluate the potential of animals (especially companion animals) to serve as an efficient reservoir host that can further alter the dynamics of human-to-human transmission (330). To date, two pet dogs (Hong Kong) and four pet cats (one each from Belgium and Hong Kong, two from the United States) have tested positive for SARS-CoV-2 (335). The World Organization for Animal Health (OIE) has confirmed the diagnosis of COVID-19 in both dogs and cats due to human-to-animal transmission (331). The similarity observed in the gene sequence of SARS-CoV-2 from an infected pet owner and his dog further confirms the occurrence of human-to-animal transmission (333). Even though asymptomatic, feline species should be considered a potential transmission route from animals to humans (326). However, currently, there are no reports of SARS-CoV-2 transmission from felines to human beings. Based on the current evidence, we can conclude that cats are susceptible to SARS-CoV-2 and can get infected by human beings. However, evidence of cat-to-human transmission is lacking and requires further studies (332). Rather than waiting for firmer evidence on animal-to-human transmission, necessary preventive measures are advised, as well as following social distancing practices among companion animals of different households (331). One of the leading veterinary diagnostic companies, IDEXX, has conducted large-scale testing for COVID-19 in specimens collected from dogs and cats. However, none of the tests turned out to be positive (334). In a study conducted to investigate the potential of different animal species to act as the intermediate host of SARS-CoV-2, it was found that both ferrets and cats can be infected via experimental inoculation of the virus. In addition, infected cats efficiently transmitted the disease to naive cats (329). SARS-CoV-2 infection and subsequent transmission in ferrets were found to recapitulate the clinical aspects of COVID-19 in humans. The infected ferrets also shed virus via multiple routes, such as saliva, nasal washes, feces, and urine, postinfection, making them an ideal animal model for studying disease transmission (337). Experimental inoculation was also done in other animal species and found that the dogs have low susceptibility, while the chickens, ducks, and pigs are not at all susceptible to SARS-CoV-2 (329). Similarly, the National Veterinary Services Laboratories of the USDA have reported COVID-19 in tigers and lions that exhibited respiratory signs like dry cough and wheezing. The zoo animals are suspected to have been infected by an asymptomatic zookeeper (335). The total number of COVID-19-positive cases in human beings is increasing at a high rate, thereby creating ideal conditions for viral spillover to other species, such as pigs. The evidence obtained from SARS-CoV suggests that pigs can get infected with SARS-CoV-2 (336). However, experimental inoculation with SARS-CoV-2 failed to infect pigs (329). Further studies are required to identify the possible animal reservoirs of SARS-CoV-2 and the seasonal variation in the circulation of these viruses in the animal population. Research collaboration between human and animal health sectors is becoming a necessity to evaluate and identify the possible risk factors of transmission between animals and humans. Such cooperation will help to devise efficient strategies for the management of emerging zoonotic diseases (12).