Progress of Pharmacological Research on AGNHP Modern pharmacological studies have shown that AGNHP has antipyretic, analgesic, anti-inflammatory, and neuroprotective effects (see Table 3 ). Zuguang Ye et al. discovered that AGNHP could significantly reduce the body temperature of hyperpyrexic rabbits in a fever model induced by intravenous injection of typhoid Vi polysaccharide vaccine in rabbit ear (Ye et al., 2003). Feng Zhang, Kunjie Zhu et al. found in an LPS-induced intracerebral inflammation model that AGNHP antagonized the toxic effect of LPS on dopaminergic neurons, inhibited release of superoxide radical, and reverse changes in cortical monoamine neurotransmitters. It was speculated that its impact on cortical monoamine neurotransmitters might be one of the mechanisms by which AGNHP promoted consciousness in LPS brain damage (Zhang F. et al., 2010; Zhu and Sun, 2014). Research by Dan Zhang et al. showed that AGNHP lowered serum LPS and lung myeloperoxidase (MPO) levels in a rat model of sepsis (Zhang et al., 2009). Yishan Tang et al. found that AGNHP lowered total LDH activity in serum and brain tissue, and changed the percentage of isomerase in a rat pertussis-induced infectious cerebral edema model (Tang et al., 2005). Fan Q et al. discovered that AGNHP had anti-atherosclerotic effects in the high fat diet-induced ApoE−/− mouse model at early- and mid-stage via regulation of Th17/Treg balance. It inhibited chronic inflammation, reduced plaque collagen fibers, and reduced inflammatory cell infiltration (Fan et al., 2020).