Progress of Pharmacological Research on SFI Modern pharmacological studies have shown that SFI has functions, including anti-shock, and protection from lung injury (see Table 3 ). Yuhang Ai et al. explored the effects and mechanism of SFI in an LPS-induced lung injury model in rats. The results indicated that SFI might protect the lung by reducing activation of NF-κB in lung tissue (Ai et al., 2006). Research by Xia Liu et al. found that SFI improved the inflammatory response of rat lung tissue in an LPS shock model by reducing expression of p65 and p50 mRNA and protein in lung tissue and serum TNF-α (Liu et al., 2019a). Li Lin et al. studied the impact of SFI on LPS acute lung injury in rats, and found that SFI significantly increased the wet/dry weight ratio (W/D) of lung tissue, neutrophil ratio in BALF, protein content, lung tissue MDA, and serum NO. It significantly alleviated injury in lung tissue, indicating that SFI had an important preventive and therapeutic effect on LPS-induced acute lung injury (Lin and Zhan, 2010). Xi Liu et al. used the LPS intravenous injection method to establish a septic shock model in rabbits. Administration of SFI significantly improved mean arterial pressure (MAP), reduced LPS, LDH, and AST serum levels, and significantly improved the morphology of heart, liver, and kidney. In addition, SFI increased levels of adenosine triphosphate (ATP) and taurine in the heart, while reducing the level of adenosine monophosphate (AMP) in the heart. The results showed that SFI had a significant protective effect against LPS-induced septic shock (Liu et al., 2019b).