Relevant Information on the Clinical Application of SFJDC Recommended Therapeutic Regimens SFJDC has been recommended in 15 therapeutic regimens of COVID-19 in China (see detailed information in Tables 1 and 2 ). Ingredients of SFJDC Reynoutria japonica Houtt. (Huzhang), Forsythia suspensa (Thunb.) Vahl (Lianqiao), Isatis tinctoria L. (Banlangen), Bupleurum chinense DC. (Chaihu), Patrinia scabiosifolia Link (Baijiangcao), Verbena officinalis L. (Mabiancao), Phragmites australis (Cav.) Trin. ex Steud. (Lugen), and Glycyrrhiza uralensis Fisch. ex DC. (Gancao). Basic information on SFJDC is provided in the Supplementary Table . Indications for the Treatment of COVID-19 With SFJDC SFJDC is used to treat external wind-heat syndrome during the clinical observation period of COVID-19 and the early stage of the disease (mild case). Indicative symptoms are fever, aversion to cold, cough with yellow phlegm, weakness, and sore throat. Progress of Pharmacological Research on SFJDC Modern pharmacological studies have found that SFJDC has antiviral, antibacterial, and anti-inflammatory properties and protects against lung injury (see Table 3 ). Yanyan Bao et al. evaluated the broad-spectrum antiviral activity of SFJDC by cytopathic effect (CPE) inhibition. A total of eight viruses, including H1N1, herpes simplex (HSV), respiratory syncytial virus, adenovirus (ADV) and Coxsackie virus, were evaluated. SFJDC had significant in vitro broad-spectrum antiviral activity and the best inhibitory effect was against parainfluenza virus (PIV). Similar results were obtained from in vivo experiments (Qiu et al., 2014; Bao et al., 2019). Ying Liu et al. used H1N1 FM1 and PR8 strains to induce nasal drip infection in an immunocompromised mouse pneumonia model. Therapeutic and preventive effects of SFJDC were observed against H1N1 infection in vivo. The results showed that SFJDC influenced the immune function of the mice, improved pneumonia symptoms caused by influenza virus, reduced the lung index of mice infected with H1N1, significantly reduced mortality, and had good therapeutic efficacy (Liu et al., 2010). Research by Weiwei Lv et al. found that SFJDC had inhibitory activity against multiple viruses and bacteria. Its antiviral activity was inferior to that of Ribavirin, but its cytotoxicity was lower. Both antiviral activity and antibacterial action were superior to those of Qingkailing granules (QKLG) (Lv et al., 2013). Li Ma et al. used a mouse pneumonia model induced by Streptococcus pneumoniae to study the anti-inflammatory mechanism of SFJDC. They discovered that it reduced white blood cell (WBC) count, reduced serum levels of the transcription factor nuclear factor kappa B (NF-κB), MCP-1, inflammatory mediator BK and COX-2, thus, having a therapeutic effect in the model (Ma et al., 2018). Further studies found that SFJDC had a significant immune regulatory function, reducing levels of B lymphocytes, CD8+ cells, interleukin-1α (IL-1α), IL-1β, IL-2, IgM, and IgG to improve lung function in mice with pneumonia. SFJDC increased the CD4+/CD8+ ratio and number of natural killer (NK) cells, thus, having a therapeutic effect in the pneumonia model (Ma et al., 2019a; Ma et al., 2019b). Zhengang Tao et al. observed a protective function of SFJDC against endotoxin LPS-induced rat lung injury. Their results showed that SFJDC inhibited the LPS-induced inflammatory response, and reduced LPS-induced lung injury. Its mechanism of action might be inhibition of the MAPK (mitogen-activated protein kinase)/NF-κB signaling pathway and downregulation of NF-κB mRNA expression (Tao et al., 2014). Yanmei Li et al. used a Pseudomonas aeruginosa (PAK)-induced KM mouse acute lung injury model to explore the mode of action of SFJDC in treatment of acute lung injury. They found that SFJDC significantly alleviated lung injury in the model and its mode of action might be related to the ERK signaling pathway (Li et al., 2017). Clinical Research on SFJDC SFJDC comes from “Detoxification Powder,” and is mainly used to treat fever, parotitis, amygdalitis, plague, and other diseases. Recent studies have shown that SFJDC has good clinical efficacy against viral diseases (such as MERS, influenza, human infection with H7N9 avian influenza) and respiratory diseases (such as acute URI, AECOPD, pneumonia, etc.) (see Table 3 ). SFJDC has been recommended in diagnosis and treatment schemes such as MERS Diagnosis and Treatment Scheme (Version 2015), China’s Influenza Diagnosis and Treatment Scheme (Version 2019), and Diagnosis and Treatment Scheme for Human Infection with H7N9 Avian Influenza (Version 1, 2017). Lei Wang et al. conducted a retrospective analysis of 87 patients with acute URI + fever, and found that patients treated with SFJDC had a significantly higher total response rate than those in the control group. SFJDC effectively improved respiratory symptoms in patients with acute URI + fever (Wang and Qiu, 2018). In the treatment of community acquired pneumonia (CAP), application of SFJDC shortened recovery time, reduced the duration of fever and reduced the levels of procalcitonin (PCT), CRP, WBC, and other indicators, effectively shortening the course of treatment (Wang, 2016). Hongxia Yu et al. evaluated the impact of SFJDC on inflammation-associated cytokines in patients with AECOPD. The results showed that SFJDC significantly reduced the levels of interleukin-8 (IL-8), TNF-α, CRP, and PCT, and had significant therapeutic efficacy against AECOPD (Yu H. X. et al., 2020). Tiling Wang et al. added SFJDC treatment to conventional treatment in 60 mild and moderate AECOPD patients and compared with 60 patients receiving conventional treatment as the control group. After 1 week, the treatment group had significantly higher arterial blood gas PaO2 than the control group, without any adverse reactions (Wang, 2015). Research showed that treatment of bacterial acute bronchitis and pneumonia with a combination of antibacterial drugs and SFJDC significantly shortened recovery of body temperature, duration of cough and the course of treatment compared with antibacterial drug alone. Chunlan Wang et al. observed that combined use of SFJDC and antibiotics significantly improved body temperature, blood sugar, ALT (glutamate transaminase), AST (aspartate aminotransferase) and other indicators compared with the control group, and patients had a higher oxygen index than the control group. The results suggested that SFJDC had a significant protective function against lung injury, and the mechanism might be related to inhibition of inflammatory response by SFJDC (Wang et al., 2014). Usage and Dosage of SFJDC Oral administration, four capsules, 3 times a day. Adverse Reactions of SFJDC Occasional nausea. SFJDC Precautions (1) Use is forbidden in those with allergic constitution or who are allergic to the drug. (2) Use is forbidden in those with deficiency-cold in spleen and stomach.