Additionally, peptide-based vaccines have become as a potentially important strategy for the development of therapeutic vaccination [117,118]. They do not require in vitro culture, making them biologically safe, and their selectivity can accurately activate the immune responses [119,120]. For example, a hydrocarbon-stapled short α-helical peptide can effectively inhibit MERS-CoV infection and its S protein-mediated cell-cell fusion [121]. The epitopes selected from the S glycoprotein of SARS-COV-2 can be used to design and prepare immunogenic multi-epitopic peptide vaccine against novel coronavirus disease caused by SARS-CoV-2 [122,123]. The T cell multi epitopes-based peptide vaccine was designed for COVID-19 using the envelope protein of SARS-CoV-2 as an immunogenic target [124]. Carrageenan and its structurally related compounds may serve as innovative adjuvants for enhancing peptide-based vaccine potency through immune enhancement [118]. The glycopeptides prepared by the combination of selected polysaccharides with peptides, and the peptide vaccines with polysaccharide adjuvants, will have important application prospects for inhibiting coronaviruses.