The existence of sequences within the ssRNA viral genome with a high degree of sequence similarity to human (or mammalian) sequences is unlikely to be accidental. Hypothetically, some viral ssRNA molecules may be channelled into the miR processing pathways influencing the host cell, whilst other ssRNAs are packaged, combinations of which may increase overall viral activity. The general prediction mechanism of putative miRs is based on the determination of seed region specificity. The seed sequence, which is the critical part of the target prediction, is essential for the binding of the miR to the target mRNA. The seed sequence or seed region is referred to as an evolutionary conserved heptameric sequence, which is mostly situated at positions 2–7 from the miR 5’-end. Therefore, point mutations at seed regions are critical to evaluate the target specificity and functional consequences of the potential miR and target mRNA. The complex interaction between the viruses and the host miRs mostly become more advantageous for the viruses as they enable them to avoid the immune system response and allow them to employ the host’s miRs [16]. Recently it has been suggested that miRs play a role in the host’s defence system against viral infections such as HIV-1, HSV, HCV, dengue and influenza [17,18,19,20,21]. Therefore, targeting specific miRs could prove to be a novel strategy for treatment. The best-known anti-miR treatment for viral infection is targeting miR-122 to cure HCV [18]. It has also been reported that anti-miR-based HCV therapy is genotype independent, which makes it safe, effective and well tolerated by patients [22].