Among these virus genomes from 3617 patients; 2588 were from the USA, 372 were from Asia, 287 were from Europe, 365 were from Oceania and 5 were from Africa. Here, we present the non-synonymous mutations of the E-protein protein over the available 3617 SARS-CoV2 genomes (Table 1 ). It is to be noted that 10 (0.386%) out of 2588 genomes from USA, 3 (0.806%) from Asia, 1 (0.348%) from Europe and 1 (0.274%) from Oceania) contained the missense mutations (Table 1) in the envelope proteins of SARS-CoV2 genomes. Changes of the R-group of each amino acid according to the mutations are also presented (Table-1). It is to be noted that the mutation of an amino acid A 1 to an amino acid A 2 is denoted by A 1 pA 2 where p denotes location in the reference amino acid sequence.• In less than 0.5% of the SARS-CoV2 genomes, the E-protein possesses the missense mutations as adumbrated in the Table 1. In TMD and C-terminus domain, there are nine different mutations where the R-group property changes. But only in QHZ00381, for the mutation L37H in the TMD of the envelope protein causes changes in amino acid from hydrophobic to hydrophilic. • TMD was also observed to be conserved over the SARS-CoV1 and COV2 genomes, but the protein sequences of QJA42107 (USA: VA), QJQ84222(USA: KENNER, LA), QHZ00381(South Korea) and QJS53352(Greece: Athens) possess four mutations A36V, L26F, L37H and L39M, respectively, in the TMD of the envelope protein. Change in the R-group property from Hydrophobic to Hydrophilic in the TMD of the envelope protein of the virus from South Korea may affect the ion channel activity of the envelope protein. • The motif ′DLLV′ has been changed to ′DFLV′ and ′YLLV′ in the proteins QJR88103 (Australia: Victoria) and QKI36831 (China: Guangzhou) due to the mutations L73F and D72Y respectively. These mutations having changes in the motif ′DFLV′ may mis-target the PALS1 at Golgi and delaying TJ formation and accordingly may influence replication and/or infectivity of the virus [10]. • In the C-terminus domain of the E-protein of SARS-CoV2 the amino acid S at 68th position changes to the amino acids F and C in the proteins {QKG87268,  QKG88576} from the USA: Massachusetts and QKI36855 from China: Guangzhou respectively. Note that the mutation of the amino acid S to F keeps the R-group property unchanged (i.e. hydrophobic to hydrophilic) while that of the amino acid S to C changes the R-group from Hydrophilic to Hydrophobic. This would possibly make changes in protein functions and interactions. Table 1 Non- synonymous mutation in the E-protein of SARS-CoV2. Protein-ID Geo-location Mutation Domain Change of R-group QJA42107 USA: VA A36V TMDa Hydrophobic to Hydrophobic QJQ84222 USA: KENNER, LA L26F TMD Hydrophobic to Hydrophobic QHZ00381 South Korea L37H TMD Hydrophobic to Hydrophilic QJS53352 Greece: Athens L39M TMD Hydrophobic to Hydrophobic QJR88103 Australia: Victoria L73F C-terminus Hydrophobic to Hydrophobic QKE45838 USA: CA P71L C-terminus Hydrophobic to Hydrophobic QKE45886 USA: CA P71L C-terminus Hydrophobic to Hydrophobic QKE45898 USA: CA P71L C-terminus Hydrophobic to Hydrophobic QKE45910 USA: CA P71L C-terminus Hydrophobic to Hydrophobic QJE38284 USA: CA P71L C-terminus Hydrophobic to Hydrophobic QIU81527 USA: WA P71L C-terminus Hydrophobic to Hydrophobic QKG87268 USA: Massachusetts S68F C-terminus Hydrophobic to Hydrophobic QKG88576 USA: Massachusetts S68F C-terminus Hydrophobic to Hydrophobic QKI36831 China: Guangzhou D72Y C-terminus Hydrophilic to Hydrophobic QKI36855 China: Guangzhou S68C C-terminus Hydrophilic to Hydrophobic a TMD: transmembrane domain.