For any therapeutic intervention, the pathological cascade involved in a disease needs to be elucidated. Therefore, identifying the SARS-CoV-2 virus receptor recognition mechanism that regulates its virulence and pathogenesis holds the key to confront the COVID19 epidemic [1]. Structural analysis of SARS-CoV-2 revealed that the enveloped, positive-sense, single-stranded RNA viruses belong to the genus β-coronavirus and have azoonotic origin [2]. Mounting evidence suggests that SARS-CoV-2 primarily spreads through the respiratory tract, either in the form of droplets, respiratory secretions, or direct contact [3]. In addition, the abundant presence of ACE2 protein receptor in lung alveolar epithelial cells facilitates the binding of SARS-CoV-2 spike-S-glycoprotein, and thus, expedites viral infection. This interaction also activates distinct cytokines crucial for antiviral responses. The data of critically severe COVID19 patients revealed the presence of IL-2, IL-6, IL-7, IL-10, TNF-α, GCSF, MCP-1, MIP-1α, and TNF-α [4] to name a few. To date, no specific approved antiviral therapy for the treatment of COVID19 infection is available, except standard supportive care e.g., oxygenation, ventilation, and fluid management, etc., and some non-specific treatments e.g., hydroxychloroquine and chloroquine etc., to ameliorate the symptoms, and some antivirals and protease inhibitors. Thus, to reverse or combat the detrimental effect produced by SARS-CoV-2 virus, there is an urgent need for a reliable therapy. In this context, multipotent mesenchymal stem cells (MSCs) have shown a strong safety and efficacy profile as they have been intensively investigated in preclinical and clinical studies of various lung diseases, including respiratory virus-induced acute respiratory distress syndrome (ARDS) [5, 6]. Over the past years, the MSCs infusion exhibited an excellent safety record as evident in the 871 clinical trials registered in the National Institute of Health database (https://clinicaltrials.gov/ct2/results?cond=Mesenchymal+Stem+Cells&term=&cntry=&state=&city=&dist=), including 117 trials (https://clinicaltrials.gov/ct2/results?cond=mesenchymal+stem+cell&term=pulmonary&cntry=&state=&city=&dist=&Search=Search) on pulmonary complications, to date. On the other hand, 2845 COVID19 trials worldwide as of 23 May 2020 at World Health Organization-International Clinical Trial Registry Platform (https://www.who.int/ictrp/en/) and 29 clinical trials on MSCs and COVID19 as of 23 May 2020 (https://clinicaltrials.gov/ct2/results?cond=mesenchymal+stem+cell&term=COVID19&cntry=&state=&city=&dist=&Search=Search) have been registered at the NIH database. Worth mentioning, that out of 29 clinical trials, one has been withdrawn (trial no. NCT04293692), therefore, as yet, 28 trials have been registered with a participation of approximately 1525 patients. All of the mentioned studies that employ MSCs and COVID19 patients are in early-phase, and either recruiting or yet to recruit the participants.