Interestingly, the data obtained from a single-center, open-labeled pilot investigation in COVID19 patients from China demonstrated that the treatment with MSCs improved disease-associated parameters in severe and critically severe patients [16]. To brief, seven patients (one critically severe, four severe, and two having common symptoms of pneumonia) were enrolled in the treatment group, where as three patients served as placebo controls (all displaying severe symptoms). All treated patients received a single dose of 1X106 MSCs/kg body weight. Remarkably, all seven showed improvement over two weeks with no noticeable adverse effect, thereby, demonstrated the safe and effective infusion of ACE2–ve MSCs in COVID19 pneumonia patients. The overall improvement in the MSCs infused group was striking as within 2 days after treatment pulmonary functions and symptoms of all the seven patients significantly improved, and most tested negative for the SARS-CoV-2 nucleic acid test over two weeks after MSCs infusion. After 6 days of infusion, the therapy inhibited the over-activation of the immune system by inhibiting CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells. It also decreased TNF-α and enhanced the number of peripheral lymphocytes, CD14+CD11c+CD11bmid regulatory DC, and anti-inflammatory cytokine IL-10. Moreover, the gene expression profile revealed that MSC was ACE2-ve and TMPRSS2-ve, which indicates that the MSCs would not be susceptible to SARS-CoV2 infection. Finally, the RNA sequencing and gene expression analysis showed that MSCs were closely involved in the anti-viral pathways, and had anti-inflammatory trophic activities [6]. In line with above findings, the results from a case report on COVID19 [16] and a study on influenza virus H9NA [5], which shares complications similar to COVID19 like ARDS and lung failure, demonstrated that MSCs can offer therapy for virally-induced pulmonary complications in clinical settings. While all these studies have provided new insights into the protective mechanism of MSCs during viral infection, a few short comings were noticed in these treatments. For example, similar to study conducted by ADSCC, there is also a lack of information on MSCs processing and screening before infusion, and the long-term follow-up of patients etc. For a protocol to be implicated in a larger cohort, optimal information regarding MSCs as well as patients needs to be investigated in a rationally designed controlled setting. Concerning the underlying mechanism by which MSCs exert a beneficial effect, the ability to home [17], engraft [17] and transdifferentiate into the target tissue, which is the infected lung in the present case, besides the bystander effect and immunomodulatory potential [9, 18, 19], are well documented. Also, the anti-apoptotic, anti-viral, and anti-bacterial functions of this therapy have been well known [20]. Under homeostatic conditions, MSCs are hypo-immunogenic and have immune evasion capabilities [21], indicating their suitability for allogeneic transplantation.