The location of any sialic acid glycan binding region of SARS-CoV-2 is, a priori unclear, although intuitively (a) it would likely be associated with the cap or knob at the outer end of the spike protein, or (b) at least not involve exactly the same domain as is required for other important functions. Although throughout the coronaviruses various external proteins and domains can recognize either protein or sugar receptors or both, the majority of such studies like those above implicate the S1 region in their spike glycoproteins, but as discussed in the present paper, there are other potential sugar binding sites that are still within the spike protein. Overall, the SARS-CoV-2 spike glycoprotein has 1273 amino acid residues and until early 2020 understanding of structure was heavily based on SARS-CoV spike glycoprotein (1255 amino acids) with 20–27% amino acid residues similarity among non-SARS coronaviruses. Most of the spike protein appears to be involved in the specific stages of cell entry. The spike glycoprotein of SARS-CoV and SARS-CoV-2 is translated as a large polypeptide that is later cleaved to S1 and S2 sites. After binding to the main receptor that that is held to be primarily ACE2, the host proteases activate the virus by cleaving first at the S1/S2 boundary (i.e. S1/S2 site) and then within S2, i.e. at the S2’ site. The spike of similar coronavirus have long been considered as being in two main states (i) the pre-fusion form (the form of the mature virion) and (ii) post-fusion form, the form after membrane fusion has been completed). More detailed studies have split the latter into a pre-hairpin intermediate state, and post-fusion hairpin state. Somewhat like in all virus Class I fusion proteins, the S2 protein contains two heptad repeat regions (HRs) of which one (HR2) is located close to the transmembrane anchor. Membrane fusion occurs when there is a conformational change in the HRs to form a fusion core. The HRs of the protein fold into a coiled-coil structure, known as the “fusogenic state”. As virus and target cell membranes fuse, the coiled coil regions (called heptad repeats) become a trimer-of-hairpins structure. The S2’ cleavage site appears particularly important by being well conserved [[3], [4], [5]] and proteolysis by cathepsin appears sufficient to expose the fusion peptide of S2 and activate fusion within the host cell endosome. In general, S2’ is now considered as the key viral fusion peptide which is unmasked following S2 cleavage. Subsequently, S1 dissociates from S2, allowing S2 to transition to the post-fusion structure.