Given that the SARS-CoV-2 spike protein displays a ganglioside-binding site at the tip of its NTD [10], the possibility that ATM, as a “ganglioside mimic”, could also bind to this site was considered. The structural features of the SARS-CoV-2 spike in the prefusion conformation [20] are shown in Fig. 1c. It consists of three interdigitated spike proteins that provide the virus its typical corona-like shape in electron microscopy images. In each subunit, the most distant part from the viral envelope is divided into two separate domains, the NTD and the RBD. The NTD has a flat surface available for ganglioside binding [10], and this process is independent from the ACE-2 receptor recognition, which occurs at the tip of the RBD [11,20]. When seen from above, the viral spike has a typical triangle shape, with a ganglioside-binding domain at each apex. Thus, the spike central area is devoted to ACE-2 binding, leaving three peripheric flat surface areas available for ganglioside attachment. Such dual ganglioside/receptor binding is commonly used by pathogenic viruses such as HIV-1 [28], [29], [30] and bacterial neurotoxins [16]. By combining the high affinity for a single protein receptor with multiple low affinity attachment sites, these pathogens have selected a very efficient pathway to gain entry into host cells.