2.2.4 Oligonucleotides Single-stranded DNA (ssDNA) is a useful biorecognition element for the detection of pathogens. While ssDNA is commonly used as a biorecognition element for DNA-based assays, ssDNA aptamers are commonly used for pathogen detection using electrochemical biosensors. Aptamers are single-stranded oligonucleotides capable of binding various molecules with high affinity and selectivity (Lakhin et al. 2013; Reverdatto et al. 2015). Aptamers are isolated from a large random sequence pool through a selection process that utilizes systematic evolution of ligands by exponential enrichment, also known as SELEX (Stoltenburg et al. 2007). Suitable binding sequences can be isolated from a large random oligonucleotide sequence pool and subsequently amplified for use. Thus, aptamers can exhibit high selectivity to target species (Stoltenburg et al. 2007). Aptamers can also be produced at a lower cost than alternative biorecognition elements, such as antibodies. Giamberardino et al. used SELEX to discover an aptamer for norovirus detection, which showed a million-fold higher binding affinity for the target than a random DNA strand that served as a negative control (Giamberardino et al. 2013). Iqbal et al. performed 10 rounds of SELEX to discover 14 aptamer clones with high affinities for C. parvum for detection in fruit samples (Iqbal et al. 2015). However, the use of aptamers as biorecognition elements has not yet replaced traditional biorecognition elements, such as antibodies, because of several challenges, such as aptamer stability, degradation, cross-reactivity, and reproducibility using alternative processing approaches (Lakhin et al. 2013).