In addition to reducing the material cost per device, efforts to reduce the manufacturing cost of biosensors have also been examined. 3D printing processes have emerged as popular methods for biosensor fabrication. For example, 3D printing is compatible with flexible and curved substrates. 3D printing has also been used for the fabrication of various components of electrochemical biosensors, such as electrodes, substrates, fluid handling components, or device packaging. In particular, 3D printing has emerged as a useful fabrication platform for microfluidic-based analytical platforms (Waheed et al. 2016). For example, to date, 3D printing has enabled the fabrication of electrode-integrated microfluidics (Erkal et al. 2014), 3D microfluidics, organ-conforming microfluidics (Singh et al. 2017a), and transducer-integrated microfluidics (Cesewski et al. 2018). Thus, 3D printing may serve as an important fabrication platform for the creation of wearable microfluidic-based electrochemical biosensors for pathogen detection.