3.4 Structural analysis of the NTD of SARS-CoV-2 S protein The next step of this study was to determine how SARS-CoV-2 could interact with plasma membrane gangliosides, and whether such interaction could be affected by CLQ and CLQ-OH. The global structure of the SARS-CoV-2 S protein [16] is shown in Fig. 5 (a–d). It consists of a trimer of S proteins, each harbouring two distinct domains distant from the viral envelope: the receptor-binding region (RBD) and the NTD. Fig. 5 Structural features of the SARS-CoV-2 spike (S) protein. (a) Trimeric structure (each S protein has a distinct surface colour, ‘blue’, ‘yellow’ and ‘purple’). (b) Ribbon representation of ‘blue’ S protein in the trimer (α-helix, red; β-strand, blue; coil, grey). (c) Surface structure of the ‘blue’ S protein isolated from the trimer. (d) Ribbon structure of the ‘blue’ S protein. (e) Zoom on the N-terminal domain (NTD) of the ‘blue’ S protein. (f,g) Molecular model of a minimal NTD obtained with Hyperchem [ribbon in representation in (f), surface rendering in (g)]. (h) Highlighting of the amino acid residues of the NTD that could belong to a potential ganglioside-binding domain. It was reasoned that if the RBD is engaged in functional interactions with the ACE-2 receptor, it would be interesting to search for potential ganglioside-binding sites on the other cell-accessible domain of the S glycoprotein (i.e. the NTD). The NTD contains approximately 290 amino acid residues. The tip of the NTD was of particular interest, as it displays a flat interface Fig. 5(f) ideally positioned for targeting a ganglioside-rich plasma membrane microdomain, such as a lipid raft. The amino acid sequence of the planar interfacial surface located at the tip of the NTD was analysed for the presence of consensus ganglioside-binding domains [20]. These motifs are constituted by a triad of mandatory amino acid residues such as (K,R)-Xn-(F,Y,W)-Xn-(K,R). The Xn intercalating segments, usually four to five residues, may contain any amino acid, but often Gly, Pro and/or Ser residues. The strict application of this algorithm did not allow the detection of any potential ganglioside-binding domain in this region of the NTD. However, an intriguing over-representation of aromatic and basic residues was found in the 129–158 segment: 129-KVCEFQFCNDPFLGVYYHKNNKSWMESEFR-158. This 30-amino acid stretch also contains Gly, Pro and/or Ser residues that are often found in ganglioside-binding motifs. These observations supported the notion that the tip of the NTD could display a large ganglioside-attachment interface.