5 Phylogenetic analysis World Health Organisation (WHO) has classified COVID-19 as a β CoV of group 2B [23]. Ten genome sequences of COVID-19 obtained from a total of nine patients exhibited 99.98% sequence identity [19]. Another study showed there was 99.8–99.9% nucleotide identity in isolates from five patients and the sequence results revealed the presence of a new beta-CoV strain [5]. The genetic sequence of the COVID-19 showed more than 80% identity to SARS-CoV and 50% to the MERS-CoV [5,19], and both SARS-CoV and MERS-CoV originate in bats [24]. Thus, the evidence from the phylogenetic analysis indicates that the COVID-19 belongs to the genus betacoronavirus, which includes SARS-CoV, that infects humans, bats, and wild animals [25]. COVID-19 represents the seventh member of the coronavirus family that infects humans and has been classified under the orthocoronavirinae subfamily. The COVID-19 forms a clade within the subgenus sarbecovirus [25]. Based on the genetic sequence identity and the phylogenetic reports, COVID-19 is sufficiently different from SARS-CoV and it can thus be considered as a new betacoronavirus that infects humans. The COVID-19 most likely developed from bat origin coronaviruses. Another piece of evidence that supports the COVID-19 is of bat origin is the existence of a high degree of homology of the ACE2 receptor from a diversity of animal species, thus implicating these animal species as possible intermediate hosts or animal models for COVID-19 infections [20]. Moreover, these viruses have a single intact open reading frame on gene 8, which is a further indicator of bat-origin CoVs. However, the amino acid sequence of the tentative receptor-binding domain resembles that of SARS-CoV, indicating that these viruses might use the same receptor [5].