The following factors may affect the immunogenicity and protective efficacy of protein-based SARS subunit vaccines, including same proteins expressed in different expression systems, and same proteins with various lengths, amino acid mutations, or deletions (He et al., 2006b; Du et al., 2009b). For example, RBD proteins containing different lengths (193-mer: RBD193-CHO or 219-mer: RBD219-CHO) elicited different immune responses and protective efficacy against SARS-CoV challenge (Du et al., 2009c, 2010). A recombinant SARS-CoV RBD (RBD-293T) protein expressed in mammalian cell system was able to induce stronger neutralizing antibody response than those expressed in insect cells (RBD-Sf9) and E. coli (RBD-Ec) (Du et al., 2009b), suggesting that RBD purified from mammalian cells has preference for further development due to its ability to maintain native conformation. Notably, a single mutation (R441A) in the RBD of SARS-CoV disrupted its major neutralizing epitopes and affinity to bind viral receptor ACE2, thus abolishing the vaccine’s immunogenicity, and hence, its ability to induce neutralizing antibodies in immunized animals (He et al., 2006b). Additionally, deletion of a particular amino acid by changing a glycosylation site in the SARS-CoV RBD (RBD219-N1) also resulted in the alteration of subunit vaccine’s immunogenicity (Chen et al., 2014).