Based on the previous experience in developing the HIV-1 fusion inhibitor SJ-2176 [58], Jiang et al. discovered the first anti-SARS-CoV peptide (SC-1) from the HR2 domain of SARS-CoV S protein S2 subunit. SC-1 could bind onto the HR1 domain to form a six-helical bundle (6-HB), blocking S protein-mediated membrane fusion and inhibiting SARS-CoV infection [59]. When MERS-CoV was circulating in human populations in 2012, following similar mechanistic design, Jiang’s research group developed another peptide, designated HR2P, which was derived from the virus HR2 region as well and effectively inhibited MERS-CoV infection [60]. The further modified version of HR2P, HR2P-M2, presented even better anti-MERS-CoV activity and pharmaceutical properties.