Drug targets for corona virus: A systematic review Abstract The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs. Introduction Coronaviruses (CoVs) have a single-stranded RNA genome (size range between 26.2 and 31.7 kb, positive sense), covered by an enveloped structure.[1] The shape is either pleomorphic or spherical, and it is characterized by bears club-shaped projections of glycoproteins on its surface (diameter 80–120 nm).[1] Among all the RNA viruses, the RNA genome of CoV is one among the largest.[2] The number of open reading frames (ORFs) in the CoV genome ranges from six to ten.[2] CoV genetic material is susceptible for frequent recombination process, which can give rise to new strains with alteration in virulence.[3] There are seven strains of human CoVs, which include 229E, NL63, OC43, HKU1, Middle East respiratory syndrome (MERS)-CoV, severe acute respiratory syndrome (SARS)-CoV, and 2019-novel coronavirus (nCoV), responsible for the infection with special refe