1. Introduction By early February 2020, it was evident that the incidence of novel coronavirus infections (COVID-19) was growing exponentially [1]. Accelerated by human migration, exported cases have been reported in various regions of the world, including Europe, Asia, North America, and Oceania [2]. To minimize the rapid growth of cases via human-to-human transmission [3,4,5], the government of China suspended all modes of transportation to and from Wuhan on 23 January 2020—including vehicles, trains, and flights—expecting that the intervention would prevent further spread of the disease [6]. As of 12 February 2020, two additional cities outside of Hubei Province—Wenzhou (Zhejiang Province) and Shenzhen (Guangdong Province)—have been placed on complete lockdown (i.e., no cross-border movement to and from the closed city) to prevent further spatial spread of COVID-19. To our knowledge, such drastic movement restrictions are a historical first. Since Wuhan was placed on lockdown, travel restriction and border control have been implemented by various countries, either as: (i) complete travel bans, (ii) travel restriction and quarantine—which allows for restriction of healthy individuals, (iii) entry screening for all incoming travelers, or some combination thereof. Most countermeasures are in line with (ii) and (iii), aside from the three cities on complete lockdown, while some countries at high risk refused any entry from China (e.g., Australia) or those from Hubei and Zhejiang provinces (e.g., Japan). All travel arrangements including tourist tours outbound from China (to international destinations) organized by Chinese travel agencies were cancelled, and all non-urgent travel with business purposes both inbound and outbound were greatly reduced. The effectiveness of quarantine (i.e., lockdown) measures to prevent the spread of an epidemic due to a novel infectious pathogen where no vaccine is available has often been a subject of debate [7,8,9]. Under ordinary circumstances, border control efforts do not go beyond entry screening. However, during the epidemic of severe acute respiratory syndrome (SARS) in 2002–2003, although entry screening at airports and other key locations was adopted, in most countries its effectiveness was estimated to be very limited due to the relatively long incubation period and low prevalence of SARS, which resulted in extremely low positive predictive values at screening locations [10,11,12,13]. In the ongoing COVID-19 epidemic, many countries have accompanied regular entry screening with drastic changes in travel restrictions. Although the effectiveness of entry screening is likely very limited as already shown elsewhere [14], the epidemiological impact of the change in movement restrictions has yet to be explicitly evaluated. In this study, we quantify the impact of the drastic reduction in travel volume—resulting from movement restrictions—on the transmission dynamics outside China. We aim to estimate reductions in the number of exported cases, probability of an outbreak occurring outside China, and any time delay to a major epidemic that may be gained with these policies. We use the example of Japan, the country in Asia that receives the largest number of visitors from China, to calculate our estimates.