To assess the completeness of the diagnosed new cases on a daily basis, we used Eq (4) first to obtain a time series of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F\left(\overline{x}\right) $$\end{document}Fx¯ to represent the estimates of cumulative number of potentially detectable cases; we then used the first derivative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}\left(\overline{x}\right) $$\end{document}F′x¯ to obtain another time series of observed new cases each day; finally, with the observed F ′ (xi) and model predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}\left(\overline{x}\right) $$\end{document}F′x¯, we obtained the detection rate Pi for day i as: 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {P}_i=F^{\prime}\left({x}_i\right)/{F}^{\prime}\left({\overline{x}}_i\right),\mathrm{i}=\left(12/8/2019,12/9,2019\dots, 2/8/2020\right) $$\end{document}Pi=F′xi/F′x¯i,i=12/8/201912/92019…2/8/2020