PMC:7047374 / 18797-20458
Annnotations
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T157","span":{"begin":284,"end":285},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T158","span":{"begin":402,"end":403},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"}],"text":"=1−δPωPωP+mPγP+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ B=\\frac{\\delta_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)} $$\\end{document}B=δPωPωP+mPγp′+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ D=\\frac{\\left(1-{\\delta}_P\\right){\\mu \\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)\\varepsilon }+\\frac{\\mu^{\\prime }{\\delta}_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ E=\\frac{\\mu }{\\left({\\gamma}_P+{m}_P\\right)\\varepsilon } $$\\end{document}E=μγP+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ G=\\frac{\\mu^{\\prime }}{\\left({\\gamma}_p^{\\prime }+{m"}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T121","span":{"begin":353,"end":358},"obj":"Chemical"},{"id":"T122","span":{"begin":776,"end":781},"obj":"Chemical"},{"id":"T123","span":{"begin":893,"end":898},"obj":"Chemical"},{"id":"T124","span":{"begin":1282,"end":1287},"obj":"Chemical"},{"id":"T125","span":{"begin":1640,"end":1645},"obj":"Chemical"}],"attributes":[{"id":"A121","pred":"chebi_id","subj":"T121","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A122","pred":"chebi_id","subj":"T122","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A123","pred":"chebi_id","subj":"T123","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A124","pred":"chebi_id","subj":"T124","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"},{"id":"A125","pred":"chebi_id","subj":"T125","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"}],"text":"=1−δPωPωP+mPγP+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ B=\\frac{\\delta_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)} $$\\end{document}B=δPωPωP+mPγp′+mP\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ D=\\frac{\\left(1-{\\delta}_P\\right){\\mu \\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)\\varepsilon }+\\frac{\\mu^{\\prime }{\\delta}_P{\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_p^{\\prime }+{m}_P\\right)\\varepsilon } $$\\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ E=\\frac{\\mu }{\\left({\\gamma}_P+{m}_P\\right)\\varepsilon } $$\\end{document}E=μγP+mPε\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ G=\\frac{\\mu^{\\prime }}{\\left({\\gamma}_p^{\\prime }+{m"}