PMC:7033720 / 16656-18444 JSONTXT

Annnotations TAB JSON ListView MergeView

    LitCovid-PubTator

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.

    LitCovid-PD-FMA-UBERON

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.

    LitCovid-PD-MONDO

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.

    LitCovid-PD-CLO

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.

    LitCovid-PD-CHEBI

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.

    LitCovid-sentences

    The genomes of the 2019-nCoV were further analysed to determine its origin and evolutionary history. Full genome comparisons indicated that 2019-nCoV is close to CoVs circulating in Rhinolophus (Horseshoe bats). For example, it shared 98.7% nucleotide identity to bat coronavirus strain BtCoV/4991 (GenBank KP876546, only 370 nt sequence of RdRp gene) and 87.9% nucleotide identity to bat CoV strain bat-SL-CoVZC45 and bat-SL-CoVZXC21, indicating that it was quite divergent from the currently known human CoV, including SARS-CoV (79.7%). To put 2019-nCoV in the context of whole Coronaviridae family, we aligned ORF1b protein sequences from representative CoVs diversity for phylogenetic analyses (Figure 3A). It revealed that the 2019-nCoV is grouped under genus β-coronavirus, subgenus Sarbecovirus, and a cluster that is known to harbour bat-SL-CoVs, many of which were associated with Rhinolophus sp. (horseshoe bats). Figure 3. Origin and evolutionary history of newly identified CoVs. A. the position of 2019-nCoV in the context of all reference CoVs. The phylogeny is constructed based on ORF1b protein alignment. For clarity, names were only shown for human-associated viruses. Bat associated diversity is shaded with blue and green boxes for alpha- and beta-CoVs respectively. B. genome structure of newly identified viruses and its sequence similarity against bat-SL-CoVZC45 and SARS-CoV in a 1000bp sliding window across the entire genome. Recombination breakpoints are shown as dashed vertical lines. C. the relationship of WHU viruses with the other SARS-like CoVs. Phylogeny is reconstructed based on the nucleotide sequence of four genes: namely 1a, 1b, S, and N. Those grouped with WHU at S gene are marked red, and those grouped with SARS CoVs at S gene are marked blue.