Third, insertions 1 and 2 in 2019-nCoV have 6-AA motifs identical to those in V4 and V5 of certain HIV-1 gp120 isolates, which are structurally close to each other but separated by a LE loop (Figure 1C) [9]. However, insertion 3 located between insertions 1 and 2 in 2019-nCoV has sequences similar (with deletions) to those in the V1 region of HIV-1 gp120. V1 is far away from V4 and V5 on the opposite side of gp120, which should not interact with V4/V5 in gp120 (Figure 1C) but is now inserted between V4 and V5 in the modelled the 2019-nCoV spike protein structure [10]. Insertion 4 was found in Gag protein of HIV-1 that is not associated with viral entry. This insertion is located too far to be considered to form the same structural unit with the other three insertions in the 2019-nCoV spike protein (Figure 1C). We do not see any selection benefit or rationale for 2019-nCoV to obtain and mix structurally unrelated parts of HIV-1 to generate a unique structure for its enhanced receptor binding as indicated by the authors [8].