Assay sensitivity based on SARS coronavirus virions To obtain a preliminary assessment of analytical sensitivity, we used purified cell culture supernatant containing SARS-CoV strain Frankfurt-1 virions grown on Vero cells. The supernatant was ultrafiltered and thereby concentrated from a ca 20-fold volume of cell culture supernatant. The concentration step simultaneously reduces the relative concentration of background nucleic acids such as not virion-packaged viral RNA. The virion preparation was quantified by real-time RT-PCR using a specific in vitro-transcribed RNA quantification standard as described in Drosten et al. [8]. All assays were subjected to replicate testing in order to determine stochastic detection frequencies at each assay’s sensitivity end point (Figure 3A and B). All assays were highly sensitive, with best results obtained for the E gene and RdRp gene assays (5.2 and 3.8 copies per reaction at 95% detection probability, respectively). These two assays were chosen for further evaluation. One of the laboratories participating in the external evaluation used other basic RT-PCR reagents (TaqMan Fast Virus 1-Step Master Mix) and repeated the sensitivity study, with equivalent results (E gene: 3.2 RNA copies/reaction (95% CI: 2.2–6.8); RdRP: 3.7 RNA copies/reaction (95% CI: 2.8–8.0). Of note, the N gene assay also performed well but was not subjected to intensive further validation because it was slightly less sensitive (Supplementary Figure S2) Figure 3 Determination of limits of detection based on SARS coronavirus genomic RNA and 2019 novel coronavirus-specific in vitro transcribed RNA CI: confidence intervals; c/r: copies per reaction; IVT: in vitro-transcribed RNA. A: E gene assay, evaluated with SARS-CoV genomic RNA. B: RdRp gene assay evaluated with SARS-CoV genomic RNA. C: E-gene assay, evaluated with 2019-nCoV-specific in vitro-transcribed RNA standard. D: RdRp gene assay evaluated with 2019-nCoV-specific in vitro-transcribed RNA standard. The x-axis shows input RNA copies per reaction. The y-axis shows positive results in all parallel reactions performed, squares are experimental data points resulting from replicate testing of given concentrations (x-axis) in parallels assays (eight replicate reactions per point). Technical limits of detection are given in the panels headings. The inner line is a probit curve (dose-response rule). The outer dotted lines are 95% CI.