20. END-OF-LIFE CARE 20.1 Introduction Optimal care of patients with LT-MCS, especially those in whom it is a destination therapy, has to include comprehensive end-of-life (EOL) considerations. When life-prolonging therapy can be expected to cause more suffering than benefit, palliative care (PC) should focus on quality of life and an easy death in accordance with the patient’s wishes. Taking care of patients with LT-MCS as a destination therapy can be more difficult than taking care of HTx candidates or HTx patients [501–504]. Factors that can complicate advanced HF management such as ageing-related comorbidities, end-organ damage, cognitive impairment, frailty and limited social support are compounded by risk of MCS failure and MCS-related complications such as bleeding, infection and stroke. As a result, LT-MCS is associated with repeated hospitalizations and a high rate of caregiver burnout. The unpredictable course of advanced HF, differences among LT-MCS devices and a limited evidence base can further complicate shared decision-making, preparedness planning and EOL care [503]. Successful PC requires a multidisciplinary approach with fluid communication between the patient and caregivers on the one hand, and between primary care services, the LT-MCS team and PC specialists on the other [9, 71, 505, 506]. 20.2 Review For best EOL care, PC should begin before implantation of the MCS device and continue throughout the duration of support, especially for patients with increasing comorbidities [502]. The main goals of PC for patients with LT-MCS are management of symptoms, psychosocial issues and spiritual concerns. Therefore, although communication with patients with advanced HF is complex due to the highly unpredictable course of the disease, among other things, there should ideally be a discussion with the patient and caregivers about expectations, goals and EOL preferences during the evaluation of patients for destination therapy LT-MCS. This discussion should lead to a comprehensive EOL plan, focusing on conditions for withdrawal of MCS or related medications, such as anticoagulation, being drawn up preoperatively and made available to all relevant parties [502, 504]. An advance health care directive, also known as a living will, including designation of a proxy decision maker for when the patient is unable to make his or her own decisions, can be a great help [507]. However, the plan should be re-evaluated whenever necessary, since the patient's acceptance of aggressive treatments may change. Life-prolonging support may be discontinued with the patient in the hospital, in a hospice for terminal patients or at home. However, it should be pointed out that hospice care prior to withdrawal may be problematic, since many hospice staff lack experience and training with MCS therapies [502]. 20.3 Symptom management These patients often experience pain, which can be of multifactorial origin but frequently affects skeletal muscle and which can be aggravated by the presence of the LT-MCS device. For pain management, opioids have advantages over non-steroidal anti-inflammatory drugs, since the latter affect renal function and volume status and increase the risk of GI bleeding. Mood disorders such as anxiety and depression are very common as well, the treatment of which, whether pharmacological or otherwise, may require referral to a mental health specialist. In such cases there can be a risk of suicide, because the patient has direct access to the life-supporting device [502]. Other frequent symptoms that must be addressed include anorexia, constipation and insomnia. 20.4 Psychosocial and spiritual concerns The single-centre Palliative Care in Heart Failure (PAL-HF) trial showed that interdisciplinary PC of patients with advanced HF afforded better quality of life and spiritual well-being, less anxiety and lower risk of depression than conventional care [508]. 20.5 Device-specific and physiological considerations The health professionals and/or caregivers who provide EOL care must have specific training in defibrillator deactivation, the minimization of VAD alarms and VAD deactivation and an understanding of residual native heart function, which allows estimation of how long the patient will survive following deactivation.