One of the most omnipresent ideas in the field of epilepsy research is that seizures manifest when there is an imbalance between excitation and inhibition.1 Specifically, it is widely believed that there is a failure or breakdown of synaptic inhibition acutely during seizures. Surprisingly, the existing data about inhibition and seizures are much more complex (and even controversial) than would be expected given the seemingly straightforward and intuitive idea that inhibition would be dysfunctional during seizures. Synaptic inhibition is mediated by GABAergic interneurons, which comprise several subtypes. Interneuron diversity makes understanding the role of inhibition in seizures challenging, as different subtypes may engage in seizures differently. Over the last decade, there have been significant technological advancements that support experiments combining cell type-specific tagging or manipulation and network-level observation, which provide insight to the role of specific classes of neurons in network activity patterns. Here, Miri et al, combine optogenetic strategies and single unit recording to probe the function and activity of specific interneuron types before and during seizures recorded in vivo.