Carbohydrate metabolism The present study evidenced the augmented production of seven major glycolytic enzymes (2.5 to 9 fold change) in biofilm stages compared to planktonic forms as listed in Table 1. Previous studies have shown the significant role of Glyceraldehyde 3-phosphate dehydrogenase in P. aeruginosa and Staphylococcus xylosus biofilms [13, 14] and also an upregulated expression in microaerophilic conditions in E.coli [15]. It is assumed that the cells within the biofilm will be in microaerophilic condition and needs a high level expression of these enzymes for adapting in the oxygen-limited environment. Another glycolytic enzyme phosphoglycerate mutase was found to be upregulated in S.xylosus biofilm [16] and is said to have a bifunctional role which helps in the synthesis of various EPSs, thus playing a significant role in the synthesis of core biofilm matrix [17]. Thus the glycolytic pathway is found to be one of the essential factors among biofilm survival mechanisms. Pyruvate dehydrogenase complex and several enzymes involved in Tricarboxylic acid (TCA) cycle and pentose phosphate pathways were also observed to be enhanced during the biofilm formation of SK460.