Mechanisms of Atrial Tachycardia and Atrial Flutter Atrial arrhythmias can be broadly classified as focal, small circuit, or macroreentry (Figure 5A–5F). Focal ATs can originate from anywhere within the atria or venous structures but do have a classical anatomic distribution (Figures 4, 5C). In the absence of a prior LA catheter or surgical ablation procedure, approximately two-thirds of focal tachycardias have an RA origin and one-third occur from the LA. In the RA, the most common anatomic locations are the crista terminalis, tricuspid annulus, CS ostium, and perinodal regions. In the LA, the pulmonary venous ostia and mitral annulus are most common. Focal tachycardias also can arise from the LA and RA appendages, but these sites of origin are rare. Macroreentry is a broad term that encompasses what have been considered to be typical and atypical atrial flutters (AFLs). The hallmark of macroreentry is that two sites ≥2 cm apart demonstrate entrainment with a postpacing interval–tachycardia cycle length of ≤20 ms (i.e., within the circuit). The most common forms of atrial macroreentry are variants of classical common and reverse common cavotricuspid isthmus-dependent flutter (Figure 5A, 5B). These include both counterclockwise (common) and clockwise (reverse common) variants, with the circuit originally described as a broad active wavefront rotating around the tricuspid annulus. However, it is now recognized that many variants exist, such as lower loop reentry and forms in which the active wavefront crosses immediately anterior or posterior to the inferior vena cava. Rarely, intraisthmus reentry can occur. Classical AFL almost invariably coexists with AF. Studies of AFL onset and termination have demonstrated that both invariably require transitional AF, indicating that flutter is largely a downstream arrhythmia. Attempts to modify the natural history of AF by ablation of AFL have thus far largely been unsuccessful. Nevertheless, cavotricuspid isthmus ablation is a simple procedure with high efficacy and low risk that can provide good arrhythmia palliation in the appropriately selected patient. However, long-term follow-up studies following flutter ablation have demonstrated increasing prevalence of AF during long-term follow-up.230 Atypical forms of macroreentry can occur in both the LA and RA and are most common in the setting of prior atrial surgery or prior ablation for AF. They can also occur spontaneously. In the RA, these can occur in the free wall, where a surgical or spontaneous scar creates the central obstacle; or in the form of upper loop reentry in which the SVC is the central obstacle, often with some anchoring scar. Circuits have also been described around segments of the crista terminalis, which acts as a central barrier and creates regions of slow conduction. Reentrant circuits on the right septum, even in the context of surgical scars or prosthetic material, are uncommon. In the LA, macroreentry is most common in the context of prior ablation. The type of circuit varies according to the nature of prior ablation and to the underlying structural heart disease. Patients with more advanced atrial remodeling, such as those with persistent AF, will be more likely to have regions of slow conduction. Linear ablation particularly induces macroreentry due to the propensity for gaps in lines to develop. At the gap site, conduction can also be slowed due to the presence of damaged tissue. Common reentrant circuits are perimitral- or mitral isthmus-dependent or, alternately, roof-dependent circuits (Figure 5E, 5F), which occur around either the left- or right-sided PVs. Ablation of these circuits can be accomplished by creation of a linear ablation lesion in the form of a mitral or an anterior line for perimitral flutter or a roof line for roof-dependent flutters. Microreentrant AFL can be ablated with a focal lesion (Figure 5D). When flutter occurs through a gap in a preexisting line, focal ablation at that gap can often be sufficient to create complete conduction block. With the diminished use of linear ablation for persistent AF treatment, the prevalence of these circuits is expected to diminish. Whenever linear ablation is required for ablation of a macroreentrant circuit it is important to check for bidirectional conduction block. Macroreentrant circuits can also occur in the LA around large regions of scar. These can either occur spontaneously, particularly in the setting of structural heart disease and atrial enlargement, or be due to prior ablation. Simultaneous dual-loop reentry can also be observed in this situation. Left septal flutter has been described, but is an uncommon arrhythmia. When patients present with macroreentrant arrhythmias following AF ablation, it is important to also identify and ablate the trigger causing onset. Common sources of triggers include the PVs, reflecting PV reconnection, or non-PV triggers. Small circuit reentry has been described more recently, and most classically occurs in the context of a prior catheter or surgical ablation procedure due to islands of scar that form a central obstacle and regions of slow conduction (Figure 5D). The definition of a small circuit as being less than 2 cm in diameter creates a rather arbitrary distinction from macroreentry, but it does have clinical relevance. In the majority of small circuits, a single focal isthmus of slow conduction can be found in which focal ablation eliminates the circuit.