Modeling Number of eQTL per Gene on Genomic Features We considered three genomic features (gene length, number of LD blocks in the cis-region, and genic constraint score) for our modeling analyses. Gene lengths were calculated using Ensembl gene locations. We obtained LD blocks from the LDetect Bitbucket site to tally the number of blocks overlapping each gene’s cis-region (gene ± 1 Mb). We obtained loss-of-function-based genic constraint scores from the Exome Aggregation Consortium (ExAC). A negative binomial generalized linear regression model was used to model the number of eQTL per gene based on the above variables; results were qualitatively the same using linear regression of Box-Cox transformed eQTL numbers. Backward-forward stepwise regression using the full model with interaction terms for these three variables was used to determine the relationship between genomic attributes and eQTL number. These analyses were implemented in R. cis-heritability of gene expression was estimated using the same CMC data that were used for eQTL detection, including all markers in the cis-region and implemented in GCTA.25 SNP-heritability estimates were then added to the modeling procedure described above. Tissue, cell type, and developmental time point specificity were measured using the expression specificity metric Tau.26, 27 Tissue specificity for each gene was calculated using publicly available expression data for 53 tissues from the GTEx project28 (release V6p). Expression for each tissue was summarized as the log2 of the median expression plus one, and then used to calculate tissue specificity Tau. Cell type specificity for each gene was computed using publicly available single-cell RNA-sequencing expression data29 generated from human cortex and hippocampus tissues. Raw expression counts for 285 cells comprising six major cell types of the brain were obtained from GEO (GSE67835) and counts data were library normalized to CPM. Expression for each cell type was summarized as the log2 of the mean expression plus one, and then used to compute cell type specificity Tau. Developmental time point specificity for each gene was calculated using publicly available DLPFC expression data for 27 time points, clustered into eight biologically relevant groups, from the BrainSpan atlas (see Web Resources). Eight developmental periods30 were defined as follows: early prenatal (8–12 pcw), early mid-prenatal (13–17 pcw), late mid-prenatal (19–24 pcw), late prenatal (25–37 pcw), infancy (4 months–1 year), childhood (2–11 years), adolescence (13–19 years), and adulthood (21+ years). Expression for each time point was summarized as the log2 of the median expression plus one and then used to calculate developmental period specificity Tau. Each Tau was added to the above model for eQTL number individually, as well as all together.